Detail
Article
Online article
FT
Medvik - BMC
  • Something wrong with this record ?

Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings

N. Coudray, MA. Occidental, JG. Mantilla, A. Claudio Quiros, K. Yuan, J. Balko, A. Tsirigos, G. Jour

. 2025 ; 31 (2) : 365-375. [pub] 20250117

Language English Country United States

Document type Journal Article

PURPOSE: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep-learning strategies on histology samples to predict outcome for osteosarcoma in the neoadjuvant setting. EXPERIMENTAL DESIGN: Our study relies on a training cohort from New York University (NYU; New York, NY) and an external cohort from Charles University (Prague, Czechia). We trained and validated the performance of a supervised approach that integrates neural network predictions of necrosis/tumor content and compared predicted overall survival (OS) using Kaplan-Meier curves. Furthermore, we explored morphology-based supervised and self-supervised approaches to determine whether intrinsic histomorphologic features could serve as a potential marker for OS in the neoadjuvant setting. RESULTS: Excellent correlation between the trained network and pathologists was obtained for the quantification of necrosis content (R2 = 0.899; r = 0.949; P < 0.0001). OS prediction cutoffs were consistent between pathologists and the neural network (22% and 30% of necrosis, respectively). The morphology-based supervised approach predicted OS; P = 0.0028, HR = 2.43 (1.10-5.38). The self-supervised approach corroborated the findings with clusters enriched in necrosis, fibroblastic stroma, and osteoblastic morphology associating with better OS [log-2 hazard ratio (lg2 HR); -2.366; -1.164; -1.175; 95% confidence interval, (-2.996 to -0.514)]. Viable/partially viable tumor and fat necrosis were associated with worse OS [lg2 HR; 1.287; 0.822; 0.828; 95% confidence interval, (0.38-1.974)]. CONCLUSIONS: Neural networks can be used to automatically estimate the necrosis to tumor ratio, a quantitative metric predictive of survival. Furthermore, we identified alternate histomorphologic biomarkers specific to the necrotic and tumor regions, which could serve as predictors.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010245
003      
CZ-PrNML
005      
20250429134541.0
007      
ta
008      
250415s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1158/1078-0432.CCR-24-2599 $2 doi
035    __
$a (PubMed)39561274
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Coudray, Nicolas $u Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York $u Division of Precision Medicine, Department of Medicine, New York University School of Medicine, New York, New York $1 https://orcid.org/0000000260502219
245    10
$a Quantitative and Morphology-Based Deep Convolutional Neural Network Approaches for Osteosarcoma Survival Prediction in the Neoadjuvant and Metastatic Settings / $c N. Coudray, MA. Occidental, JG. Mantilla, A. Claudio Quiros, K. Yuan, J. Balko, A. Tsirigos, G. Jour
520    9_
$a PURPOSE: Necrosis quantification in the neoadjuvant setting using pathology slide review is the most important validated prognostic marker in conventional osteosarcoma. Herein, we explored three deep-learning strategies on histology samples to predict outcome for osteosarcoma in the neoadjuvant setting. EXPERIMENTAL DESIGN: Our study relies on a training cohort from New York University (NYU; New York, NY) and an external cohort from Charles University (Prague, Czechia). We trained and validated the performance of a supervised approach that integrates neural network predictions of necrosis/tumor content and compared predicted overall survival (OS) using Kaplan-Meier curves. Furthermore, we explored morphology-based supervised and self-supervised approaches to determine whether intrinsic histomorphologic features could serve as a potential marker for OS in the neoadjuvant setting. RESULTS: Excellent correlation between the trained network and pathologists was obtained for the quantification of necrosis content (R2 = 0.899; r = 0.949; P < 0.0001). OS prediction cutoffs were consistent between pathologists and the neural network (22% and 30% of necrosis, respectively). The morphology-based supervised approach predicted OS; P = 0.0028, HR = 2.43 (1.10-5.38). The self-supervised approach corroborated the findings with clusters enriched in necrosis, fibroblastic stroma, and osteoblastic morphology associating with better OS [log-2 hazard ratio (lg2 HR); -2.366; -1.164; -1.175; 95% confidence interval, (-2.996 to -0.514)]. Viable/partially viable tumor and fat necrosis were associated with worse OS [lg2 HR; 1.287; 0.822; 0.828; 95% confidence interval, (0.38-1.974)]. CONCLUSIONS: Neural networks can be used to automatically estimate the necrosis to tumor ratio, a quantitative metric predictive of survival. Furthermore, we identified alternate histomorphologic biomarkers specific to the necrotic and tumor regions, which could serve as predictors.
650    12
$a osteosarkom $x mortalita $x patologie $x terapie $7 D012516
650    _2
$a lidé $7 D006801
650    12
$a neoadjuvantní terapie $x metody $7 D020360
650    12
$a neuronové sítě $7 D016571
650    _2
$a prognóza $7 D011379
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a ženské pohlaví $7 D005260
650    12
$a nádory kostí $x mortalita $x patologie $7 D001859
650    12
$a nekróza $7 D009336
650    _2
$a deep learning $7 D000077321
650    _2
$a dospělí $7 D000328
650    _2
$a mladiství $7 D000293
650    _2
$a Kaplanův-Meierův odhad $7 D053208
650    _2
$a dítě $7 D002648
650    _2
$a mladý dospělý $7 D055815
655    _2
$a časopisecké články $7 D016428
700    1_
$a Occidental, Michael A $u Ronald O. Perelman Department of Dermatology, NYU Langone Grossman School of Medicine, New York, New York $1 https://orcid.org/0000000203149439
700    1_
$a Mantilla, Jose G $u Department of Pathology, NYU Langone Grossman School of Medicine, New York, New York $1 https://orcid.org/0000000347526459
700    1_
$a Claudio Quiros, Adalberto $u School of Computing Science, University of Glasgow, Glasgow, Scotland $u School of Cancer Sciences, University of Glasgow, Glasgow, Scotland $1 https://orcid.org/0000000348040741
700    1_
$a Yuan, Ke $u School of Computing Science, University of Glasgow, Glasgow, Scotland $u School of Cancer Sciences, University of Glasgow, Glasgow, Scotland $u Cancer Research UK Scotland Institute, Glasgow, Scotland $1 https://orcid.org/0000000223181460
700    1_
$a Balko, Jan $u Department of Pathology and Molecular Medicine, Second Faculty of Medicine, Charles University and Motol University Hospital, Prague, Czech Republic $1 https://orcid.org/0000000304512786
700    1_
$a Tsirigos, Aristotelis $u Applied Bioinformatics Laboratories, New York University School of Medicine, New York, New York $u Division of Precision Medicine, Department of Medicine, New York University School of Medicine, New York, New York $u Department of Pathology, NYU Langone Grossman School of Medicine, New York, New York $1 https://orcid.org/0000000275128477
700    1_
$a Jour, George $u Ronald O. Perelman Department of Dermatology, NYU Langone Grossman School of Medicine, New York, New York $u Department of Pathology, NYU Langone Grossman School of Medicine, New York, New York $1 https://orcid.org/0000000189168966
773    0_
$w MED00001121 $t Clinical cancer research $x 1557-3265 $g Roč. 31, č. 2 (2025), s. 365-375
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39561274 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134536 $b ABA008
999    __
$a ok $b bmc $g 2311549 $s 1247326
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 31 $c 2 $d 365-375 $e 20250117 $i 1557-3265 $m Clinical cancer research $n Clin Cancer Res $x MED00001121
LZP    __
$a Pubmed-20250415

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...