Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease

O. Ozisik, NS. Kara, T. Abbassi-Daloii, M. Térézol, EC. Kuijper, N. Queralt-Rosinach, A. Jacobsen, OU. Sezerman, M. Roos, CT. Evelo, A. Baudot, F. Ehrhart, E. Mina

. 2025 ; 15 (1) : 1412. [pub] 20250109

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010295

Grantová podpora
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020
EJP RD COFUND-EJP N° 825575 Horizon 2020

Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010295
003      
CZ-PrNML
005      
20250429135328.0
007      
ta
008      
250415s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41598-025-85580-4 $2 doi
035    __
$a (PubMed)39789061
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Ozisik, Ozan $u Aix Marseille Univ, INSERM, MMG, Marseille, France. ozan.ozisik@inserm.fr
245    12
$a A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease / $c O. Ozisik, NS. Kara, T. Abbassi-Daloii, M. Térézol, EC. Kuijper, N. Queralt-Rosinach, A. Jacobsen, OU. Sezerman, M. Roos, CT. Evelo, A. Baudot, F. Ehrhart, E. Mina
520    9_
$a Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.
650    12
$a Huntingtonova nemoc $x genetika $7 D006816
650    _2
$a lidé $7 D006801
650    12
$a transkriptom $7 D059467
650    12
$a stanovení celkové genové exprese $x metody $7 D020869
650    _2
$a genové regulační sítě $7 D053263
650    _2
$a výpočetní biologie $x metody $7 D019295
655    _2
$a časopisecké články $7 D016428
655    _2
$a práce podpořená grantem $7 D013485
700    1_
$a Kara, Nazli Sila $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic $u Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
700    1_
$a Abbassi-Daloii, Tooba $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands
700    1_
$a Térézol, Morgane $u Aix Marseille Univ, INSERM, MMG, Marseille, France
700    1_
$a Kuijper, Elsa C $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Queralt-Rosinach, Núria $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Jacobsen, Annika $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Sezerman, Osman Ugur $u Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
700    1_
$a Roos, Marco $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
700    1_
$a Evelo, Chris T $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands $u Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
700    1_
$a Baudot, Anaïs $u Aix Marseille Univ, INSERM, MMG, Marseille, France $u Barcelona Supercomputing Center (BSC), Barcelona, Spain $u CNRS, Marseille, France
700    1_
$a Ehrhart, Friederike $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands
700    1_
$a Mina, Eleni $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
773    0_
$w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 1412
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39789061 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135323 $b ABA008
999    __
$a ok $b bmc $g 2311573 $s 1247376
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 15 $c 1 $d 1412 $e 20250109 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
GRA    __
$a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...