-
Je něco špatně v tomto záznamu ?
A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease
O. Ozisik, NS. Kara, T. Abbassi-Daloii, M. Térézol, EC. Kuijper, N. Queralt-Rosinach, A. Jacobsen, OU. Sezerman, M. Roos, CT. Evelo, A. Baudot, F. Ehrhart, E. Mina
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
EJP RD COFUND-EJP N° 825575
Horizon 2020
NLK
Directory of Open Access Journals
od 2011
Free Medical Journals
od 2011
Nature Open Access
od 2011-12-01
PubMed Central
od 2011
Europe PubMed Central
od 2011
ProQuest Central
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Open Access Digital Library
od 2011-01-01
Health & Medicine (ProQuest)
od 2011-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2011
Springer Nature OA/Free Journals
od 2011-12-01
- MeSH
- genové regulační sítě MeSH
- Huntingtonova nemoc * genetika MeSH
- lidé MeSH
- stanovení celkové genové exprese * metody MeSH
- transkriptom * MeSH
- výpočetní biologie metody MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.
Aix Marseille Univ INSERM MMG Marseille France
Barcelona Supercomputing Center Barcelona Spain
Department of Bioinformatics BiGCaT NUTRIM MHeNs Maastricht University Maastricht The Netherlands
Department of Human Genetics Leiden University Medical Center Leiden The Netherlands
Maastricht Centre for Systems Biology Maastricht University Maastricht The Netherlands
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010295
- 003
- CZ-PrNML
- 005
- 20250429135328.0
- 007
- ta
- 008
- 250415s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41598-025-85580-4 $2 doi
- 035 __
- $a (PubMed)39789061
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Ozisik, Ozan $u Aix Marseille Univ, INSERM, MMG, Marseille, France. ozan.ozisik@inserm.fr
- 245 12
- $a A collaborative network analysis for the interpretation of transcriptomics data in Huntington's disease / $c O. Ozisik, NS. Kara, T. Abbassi-Daloii, M. Térézol, EC. Kuijper, N. Queralt-Rosinach, A. Jacobsen, OU. Sezerman, M. Roos, CT. Evelo, A. Baudot, F. Ehrhart, E. Mina
- 520 9_
- $a Rare diseases may affect the quality of life of patients and be life-threatening. Therapeutic opportunities are often limited, in part because of the lack of understanding of the molecular mechanisms underlying these diseases. This can be ascribed to the low prevalence of rare diseases and therefore the lower sample sizes available for research. A way to overcome this is to integrate experimental rare disease data with prior knowledge using network-based methods. Taking this one step further, we hypothesized that combining and analyzing the results from multiple network-based methods could provide data-driven hypotheses of pathogenic mechanisms from multiple perspectives.We analyzed a Huntington's disease transcriptomics dataset using six network-based methods in a collaborative way. These methods either inherently reported enriched annotation terms or their results were fed into enrichment analyses. The resulting significantly enriched Reactome pathways were then summarized using the ontological hierarchy which allowed the integration and interpretation of outputs from multiple methods. Among the resulting enriched pathways, there are pathways that have been shown previously to be involved in Huntington's disease and pathways whose direct contribution to disease pathogenesis remains unclear and requires further investigation.In summary, our study shows that collaborative network analysis approaches are well-suited to study rare diseases, as they provide hypotheses for pathogenic mechanisms from multiple perspectives. Applying different methods to the same case study can uncover different disease mechanisms that would not be apparent with the application of a single method.
- 650 12
- $a Huntingtonova nemoc $x genetika $7 D006816
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a transkriptom $7 D059467
- 650 12
- $a stanovení celkové genové exprese $x metody $7 D020869
- 650 _2
- $a genové regulační sítě $7 D053263
- 650 _2
- $a výpočetní biologie $x metody $7 D019295
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 700 1_
- $a Kara, Nazli Sila $u Institute of Biology and Medical Genetics, First Faculty of Medicine, Charles University, Prague, Czech Republic $u Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- 700 1_
- $a Abbassi-Daloii, Tooba $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands
- 700 1_
- $a Térézol, Morgane $u Aix Marseille Univ, INSERM, MMG, Marseille, France
- 700 1_
- $a Kuijper, Elsa C $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 700 1_
- $a Queralt-Rosinach, Núria $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 700 1_
- $a Jacobsen, Annika $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 700 1_
- $a Sezerman, Osman Ugur $u Department of Biostatistics and Medical Informatics, School of Medicine, Acibadem Mehmet Ali Aydinlar University, Istanbul, Turkey
- 700 1_
- $a Roos, Marco $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 700 1_
- $a Evelo, Chris T $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands $u Maastricht Centre for Systems Biology (MaCSBio), Maastricht University, Maastricht, The Netherlands
- 700 1_
- $a Baudot, Anaïs $u Aix Marseille Univ, INSERM, MMG, Marseille, France $u Barcelona Supercomputing Center (BSC), Barcelona, Spain $u CNRS, Marseille, France
- 700 1_
- $a Ehrhart, Friederike $u Department of Bioinformatics-BiGCaT, NUTRIM/MHeNs, Maastricht University, Maastricht, The Netherlands
- 700 1_
- $a Mina, Eleni $u Department of Human Genetics, Leiden University Medical Center, Leiden, The Netherlands
- 773 0_
- $w MED00182195 $t Scientific reports $x 2045-2322 $g Roč. 15, č. 1 (2025), s. 1412
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39789061 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135323 $b ABA008
- 999 __
- $a ok $b bmc $g 2311573 $s 1247376
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 15 $c 1 $d 1412 $e 20250109 $i 2045-2322 $m Scientific reports $n Sci Rep $x MED00182195
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- GRA __
- $a EJP RD COFUND-EJP N° 825575 $p Horizon 2020
- LZP __
- $a Pubmed-20250415