• Je něco špatně v tomto záznamu ?

International multicenter validation of AI-driven ultrasound detection of ovarian cancer

F. Christiansen, E. Konuk, AR. Ganeshan, R. Welch, J. Palés Huix, A. Czekierdowski, FPG. Leone, LA. Haak, R. Fruscio, A. Gaurilcikas, D. Franchi, D. Fischerova, E. Mor, L. Savelli, MÀ. Pascual, MJ. Kudla, S. Guerriero, F. Buonomo, K. Liuba, N....

. 2025 ; 31 (1) : 189-196. [pub] 20250102

Jazyk angličtina Země Spojené státy americké

Typ dokumentu časopisecké články, multicentrická studie, validační studie

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010418

Grantová podpora
231143 Radiumhemmets Forskningsfonder (Cancer Research Foundations of Radiumhemmet)
211657 Pi 01 H Cancerfonden (Swedish Cancer Society)
2020-01702 Vetenskapsrdet (Swedish Research Council)

Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen's kappa, Matthew's correlation coefficient, diagnostic odds ratio and Youden's J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.

1st Department of Obstetrics and Gynecology Alexandra Hospital Medical School National and Kapodistrian University of Athens Athens Greece

3rd Faculty of Medicine Charles University Prague Czech Republic

Centro Integrato di Procreazione Medicalmente Assistita e Diagnostica Ostetrico Ginecologica Azienda Ospedaliero Universitaria Policlinico Duilio Casula Monserrato University of Cagliari Cagliari Italy

Department of Clinical Science and Education Södersjukhuset Karolinska Institutet Stockholm Sweden

Department of Gynecological Oncology and Gynecology Medical University of Lublin Lublin Poland

Department of Medicine and Surgery University of Milan Bicocca Milan Italy

Department of Obstetrics and Gynaecology Lithuanian University of Health Sciences Kaunas Lithuania

Department of Obstetrics and Gynecology Clínica Universidad de Navarra Pamplona Spain

Department of Obstetrics and Gynecology Rizal Medical Center Manila Philippines

Department of Obstetrics and Gynecology Skåne University Hospital Lund Sweden

Department of Obstetrics and Gynecology Södersjukhuset Stockholm Sweden

Department of Obstetrics Gynecology and Reproduction Dexeus University Hospital Barcelona Spain

Department of Perinatology and Oncological Gynecology Faculty of Medical Sciences Medical University of Silesia Katowice Poland

Digital Futures KTH Royal Institute of Technology Stockholm Sweden

Fondazione Poliambulanza Istituto Ospedaliero Brescia Italy

Gynecologic and Obstetric Unit Women's and Children's Department Forlì Hospital Forlì Italy

Gynecologic Oncology Centre Department of Gynecology Obstetrics and Neonatology 1st Faculty of Medicine Charles University and General University Hospital Prague Prague Czech Republic

Gynecology and Breast Care Center Mater Olbia Hospital Olbia Italy

Institute for Maternal and Child Health IRCCS 'Burlo Garofolo' Trieste Italy

Institute for the Care of Mother and Child Prague Czech Republic

Obstetrics and Gynecology Unit Forlì and Faenza Hospitals AUSL Romagna Forlì Italy

School of Electrical Engineering and Computer Science KTH Royal Institute of Technology Stockholm Sweden

Science for Life Laboratory Stockholm Sweden

Section of Obstetrics and Gynecology Department of Clinical Sciences Università Politecnica delle Marche Azienda Ospedaliero Universitaria delle Marche Ancona Italy

Unit of Obstetrics and Gynecology Department of Biomedical and Clinical Sciences Luigi Sacco University Hospital University of Milan Milan Italy

Unit of Preventive Gynecology European Institute of Oncology IRCCS Milan Italy

UO Gynecology Fondazione IRCCS San Gerardo dei Tintori Monza Italy

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010418
003      
CZ-PrNML
005      
20250429134746.0
007      
ta
008      
250415s2025 xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1038/s41591-024-03329-4 $2 doi
035    __
$a (PubMed)39747679
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Christiansen, Filip $u Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden $u Department of Obstetrics and Gynecology, Södersjukhuset, Stockholm, Sweden $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden $1 https://orcid.org/0000000172069611
245    10
$a International multicenter validation of AI-driven ultrasound detection of ovarian cancer / $c F. Christiansen, E. Konuk, AR. Ganeshan, R. Welch, J. Palés Huix, A. Czekierdowski, FPG. Leone, LA. Haak, R. Fruscio, A. Gaurilcikas, D. Franchi, D. Fischerova, E. Mor, L. Savelli, MÀ. Pascual, MJ. Kudla, S. Guerriero, F. Buonomo, K. Liuba, N. Montik, JL. Alcázar, E. Domali, NCP. Pangilinan, C. Carella, M. Munaretto, P. Saskova, D. Verri, C. Visenzi, P. Herman, K. Smith, E. Epstein
520    9_
$a Ovarian lesions are common and often incidentally detected. A critical shortage of expert ultrasound examiners has raised concerns of unnecessary interventions and delayed cancer diagnoses. Deep learning has shown promising results in the detection of ovarian cancer in ultrasound images; however, external validation is lacking. In this international multicenter retrospective study, we developed and validated transformer-based neural network models using a comprehensive dataset of 17,119 ultrasound images from 3,652 patients across 20 centers in eight countries. Using a leave-one-center-out cross-validation scheme, for each center in turn, we trained a model using data from the remaining centers. The models demonstrated robust performance across centers, ultrasound systems, histological diagnoses and patient age groups, significantly outperforming both expert and non-expert examiners on all evaluated metrics, namely F1 score, sensitivity, specificity, accuracy, Cohen's kappa, Matthew's correlation coefficient, diagnostic odds ratio and Youden's J statistic. Furthermore, in a retrospective triage simulation, artificial intelligence (AI)-driven diagnostic support reduced referrals to experts by 63% while significantly surpassing the diagnostic performance of the current practice. These results show that transformer-based models exhibit strong generalization and above human expert-level diagnostic accuracy, with the potential to alleviate the shortage of expert ultrasound examiners and improve patient outcomes.
650    _2
$a lidé $7 D006801
650    _2
$a ženské pohlaví $7 D005260
650    12
$a nádory vaječníků $x diagnostické zobrazování $7 D010051
650    _2
$a retrospektivní studie $7 D012189
650    12
$a ultrasonografie $x metody $7 D014463
650    _2
$a lidé středního věku $7 D008875
650    12
$a neuronové sítě $7 D016571
650    _2
$a dospělí $7 D000328
650    _2
$a umělá inteligence $7 D001185
650    _2
$a senioři $7 D000368
650    _2
$a deep learning $7 D000077321
650    _2
$a senzitivita a specificita $7 D012680
655    _2
$a časopisecké články $7 D016428
655    _2
$a multicentrická studie $7 D016448
655    _2
$a validační studie $7 D023361
700    1_
$a Konuk, Emir $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden $1 https://orcid.org/0000000194374553
700    1_
$a Ganeshan, Adithya Raju $u Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden $1 https://orcid.org/0000000182166458
700    1_
$a Welch, Robert $u Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden $1 https://orcid.org/0000000318196120
700    1_
$a Palés Huix, Joana $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden $1 https://orcid.org/0009000841171638
700    1_
$a Czekierdowski, Artur $u Department of Gynecological Oncology and Gynecology, Medical University of Lublin, Lublin, Poland
700    1_
$a Leone, Francesco Paolo Giuseppe $u Unit of Obstetrics & Gynecology, Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, University of Milan, Milan, Italy
700    1_
$a Haak, Lucia Anna $u Institute for the Care of Mother and Child, Prague, Czech Republic $u Third Faculty of Medicine, Charles University, Prague, Czech Republic $1 https://orcid.org/0000000157497968
700    1_
$a Fruscio, Robert $u Department of Medicine and Surgery, University of Milan-Bicocca, Milan, Italy $u UO Gynecology, Fondazione IRCCS San Gerardo dei Tintori, Monza, Italy $1 https://orcid.org/0000000156882194
700    1_
$a Gaurilcikas, Adrius $u Department of Obstetrics and Gynaecology, Lithuanian University of Health Sciences, Kaunas, Lithuania
700    1_
$a Franchi, Dorella $u Unit of Preventive Gynecology, European Institute of Oncology IRCCS, Milan, Italy $1 https://orcid.org/0000000239505538
700    1_
$a Fischerova, Daniela $u Gynecologic Oncology Centre, Department of Gynecology, Obstetrics and Neonatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $1 https://orcid.org/0000000272243218 $7 xx0074804
700    1_
$a Mor, Elisa $u Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
700    1_
$a Savelli, Luca $u Obstetrics and Gynecology Unit, Forlì and Faenza Hospitals, AUSL Romagna, Forlì, Italy
700    1_
$a Pascual, Maria Àngela $u Department of Obstetrics, Gynecology, and Reproduction, Dexeus University Hospital, Barcelona, Spain $1 https://orcid.org/0000000150956981
700    1_
$a Kudla, Marek Jerzy $u Department of Perinatology and Oncological Gynecology, Faculty of Medical Sciences, Medical University of Silesia, Katowice, Poland
700    1_
$a Guerriero, Stefano $u Centro Integrato di Procreazione Medicalmente Assistita e Diagnostica Ostetrico-Ginecologica, Azienda Ospedaliero Universitaria-Policlinico Duilio Casula, Monserrato, University of Cagliari, Cagliari, Italy
700    1_
$a Buonomo, Francesca $u Institute for Maternal and Child Health, IRCCS 'Burlo Garofolo', Trieste, Italy $1 https://orcid.org/0000000265872622
700    1_
$a Liuba, Karina $u Department of Obstetrics and Gynecology, Skåne University Hospital, Lund, Sweden
700    1_
$a Montik, Nina $u Section of Obstetrics and Gynecology, Department of Clinical Sciences, Università Politecnica delle Marche, Azienda Ospedaliero-Universitaria delle Marche, Ancona, Italy
700    1_
$a Alcázar, Juan Luis $u Department of Obstetrics and Gynecology, Clínica Universidad de Navarra, Pamplona, Spain
700    1_
$a Domali, Ekaterini $u First Department of Obstetrics and Gynecology, Alexandra Hospital, Medical School, National and Kapodistrian University of Athens, Athens, Greece $1 https://orcid.org/0000000188993040
700    1_
$a Pangilinan, Nelinda Catherine P $u Department of Obstetrics and Gynecology, Rizal Medical Center, Manila, Philippines
700    1_
$a Carella, Chiara $u Unit of Obstetrics & Gynecology, Department of Biomedical and Clinical Sciences, Luigi Sacco University Hospital, University of Milan, Milan, Italy $1 https://orcid.org/0009000626905686
700    1_
$a Munaretto, Maria $u Gynecologic and Obstetric Unit, Women's and Children's Department, Forlì Hospital, Forlì, Italy
700    1_
$a Saskova, Petra $u Gynecologic Oncology Centre, Department of Gynecology, Obstetrics and Neonatology, First Faculty of Medicine, Charles University and General University Hospital in Prague, Prague, Czech Republic $1 https://orcid.org/0000000253678056
700    1_
$a Verri, Debora $u Gynecology and Breast Care Center, Mater Olbia Hospital, Olbia, Italy $1 https://orcid.org/0000000274068804
700    1_
$a Visenzi, Chiara $u Fondazione Poliambulanza Istituto Ospedaliero, Brescia, Italy
700    1_
$a Herman, Pawel $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Digital Futures, KTH Royal Institute of Technology, Stockholm, Sweden
700    1_
$a Smith, Kevin $u School of Electrical Engineering and Computer Science, KTH Royal Institute of Technology, Stockholm, Sweden $u Science for Life Laboratory, Stockholm, Sweden
700    1_
$a Epstein, Elisabeth $u Department of Clinical Science and Education, Södersjukhuset, Karolinska Institutet, Stockholm, Sweden. elisabeth.epstein@ki.se $u Department of Obstetrics and Gynecology, Södersjukhuset, Stockholm, Sweden. elisabeth.epstein@ki.se $1 https://orcid.org/0000000322987785
773    0_
$w MED00003459 $t Nature medicine $x 1546-170X $g Roč. 31, č. 1 (2025), s. 189-196
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39747679 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429134742 $b ABA008
999    __
$a ok $b bmc $g 2311647 $s 1247499
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 31 $c 1 $d 189-196 $e 20250102 $i 1546-170X $m Nature medicine $n Nat Med $x MED00003459
GRA    __
$a 231143 $p Radiumhemmets Forskningsfonder (Cancer Research Foundations of Radiumhemmet)
GRA    __
$a 211657 Pi 01 H $p Cancerfonden (Swedish Cancer Society)
GRA    __
$a 2020-01702 $p Vetenskapsrdet (Swedish Research Council)
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...