Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report

J. Issa, A. Chidiac, P. Mozdziak, B. Kempisty, B. Dorocka-Bobkowska, K. Mehr, M. Dyszkiewicz-Konwińska

. 2024 ; 60 (12) : . [pub] 20241212

Jazyk angličtina Země Švýcarsko

Typ dokumentu kazuistiky, časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25010568

Grantová podpora
PPI/STE/2020/1/00014/DEC/02 NAWA Polish National Agency for Academic Exchange

Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25010568
003      
CZ-PrNML
005      
20250429135236.0
007      
ta
008      
250415s2024 sz f 000 0|eng||
009      
AR
024    7_
$a 10.3390/medicina60122048 $2 doi
035    __
$a (PubMed)39768927
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a sz
100    1_
$a Issa, Julien $u Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $u Doctoral School, Poznań University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000264987989
245    10
$a Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report / $c J. Issa, A. Chidiac, P. Mozdziak, B. Kempisty, B. Dorocka-Bobkowska, K. Mehr, M. Dyszkiewicz-Konwińska
520    9_
$a Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.
650    _2
$a lidé $7 D006801
650    12
$a počítačová tomografie s kuželovým svazkem $x metody $7 D054893
650    12
$a kalcinóza $x diagnostické zobrazování $7 D002114
650    12
$a umělá inteligence $7 D001185
650    _2
$a lidé středního věku $7 D008875
650    _2
$a dura mater $x diagnostické zobrazování $7 D004388
650    _2
$a mužské pohlaví $7 D008297
655    _2
$a kazuistiky $7 D002363
655    _2
$a časopisecké články $7 D016428
700    1_
$a Chidiac, Alexandre $u Faculty of Medical Sciences, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
700    1_
$a Mozdziak, Paul $u Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA $u Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA $1 https://orcid.org/0000000215753123
700    1_
$a Kempisty, Bartosz $u Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA $u Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland $u Department of Human Morphology and Embryology, Head of Division of Anatomy, Wrocław Medical University, 50-367 Wrocław, Poland $u Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
700    1_
$a Dorocka-Bobkowska, Barbara $u Department of Gerostomatology and Pathology of Oral Cavity, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000336597761
700    1_
$a Mehr, Katarzyna $u Department of Gerostomatology and Pathology of Oral Cavity, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
700    1_
$a Dyszkiewicz-Konwińska, Marta $u Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000280699004
773    0_
$w MED00180386 $t Medicina $x 1648-9144 $g Roč. 60, č. 12 (2024)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/39768927 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250415 $b ABA008
991    __
$a 20250429135231 $b ABA008
999    __
$a ok $b bmc $g 2311750 $s 1247649
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2024 $b 60 $c 12 $e 20241212 $i 1648-9144 $m Medicina $n Medicina (Kaunas) $x MED00180386
GRA    __
$a PPI/STE/2020/1/00014/DEC/02 $p NAWA Polish National Agency for Academic Exchange
LZP    __
$a Pubmed-20250415

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...