-
Je něco špatně v tomto záznamu ?
Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report
J. Issa, A. Chidiac, P. Mozdziak, B. Kempisty, B. Dorocka-Bobkowska, K. Mehr, M. Dyszkiewicz-Konwińska
Jazyk angličtina Země Švýcarsko
Typ dokumentu kazuistiky, časopisecké články
Grantová podpora
PPI/STE/2020/1/00014/DEC/02
NAWA Polish National Agency for Academic Exchange
NLK
Directory of Open Access Journals
od 2007
PubMed Central
od 2018
Europe PubMed Central
od 2018
ProQuest Central
od 2018-01-01
Open Access Digital Library
od 2014-01-01
Health & Medicine (ProQuest)
od 2018-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2007
PubMed
39768927
DOI
10.3390/medicina60122048
Knihovny.cz E-zdroje
- MeSH
- dura mater diagnostické zobrazování MeSH
- kalcinóza * diagnostické zobrazování MeSH
- lidé středního věku MeSH
- lidé MeSH
- počítačová tomografie s kuželovým svazkem * metody MeSH
- umělá inteligence * MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- kazuistiky MeSH
Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.
Doctoral School Poznań University of Medical Sciences Bukowska 70 60 812 Poznan Poland
Faculty of Medical Sciences Poznan University of Medical Sciences Fredry 10 61 701 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Sciences North Carolina State University Raleigh NC 27695 USA
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25010568
- 003
- CZ-PrNML
- 005
- 20250429135236.0
- 007
- ta
- 008
- 250415s2024 sz f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.3390/medicina60122048 $2 doi
- 035 __
- $a (PubMed)39768927
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a sz
- 100 1_
- $a Issa, Julien $u Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $u Doctoral School, Poznań University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000264987989
- 245 10
- $a Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report / $c J. Issa, A. Chidiac, P. Mozdziak, B. Kempisty, B. Dorocka-Bobkowska, K. Mehr, M. Dyszkiewicz-Konwińska
- 520 9_
- $a Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a počítačová tomografie s kuželovým svazkem $x metody $7 D054893
- 650 12
- $a kalcinóza $x diagnostické zobrazování $7 D002114
- 650 12
- $a umělá inteligence $7 D001185
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a dura mater $x diagnostické zobrazování $7 D004388
- 650 _2
- $a mužské pohlaví $7 D008297
- 655 _2
- $a kazuistiky $7 D002363
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Chidiac, Alexandre $u Faculty of Medical Sciences, Poznan University of Medical Sciences, Fredry 10, 61-701 Poznan, Poland
- 700 1_
- $a Mozdziak, Paul $u Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA $u Physiology Graduate Program, North Carolina State University, Raleigh, NC 27695, USA $1 https://orcid.org/0000000215753123
- 700 1_
- $a Kempisty, Bartosz $u Prestage Department of Poultry Sciences, North Carolina State University, Raleigh, NC 27695, USA $u Department of Veterinary Surgery, Institute of Veterinary Medicine, Nicolaus Copernicus University in Torun, 87-100 Torun, Poland $u Department of Human Morphology and Embryology, Head of Division of Anatomy, Wrocław Medical University, 50-367 Wrocław, Poland $u Center of Assisted Reproduction, Department of Obstetrics and Gynecology, University Hospital and Masaryk University, 601 77 Brno, Czech Republic
- 700 1_
- $a Dorocka-Bobkowska, Barbara $u Department of Gerostomatology and Pathology of Oral Cavity, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000336597761
- 700 1_
- $a Mehr, Katarzyna $u Department of Gerostomatology and Pathology of Oral Cavity, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland
- 700 1_
- $a Dyszkiewicz-Konwińska, Marta $u Chair of Practical Clinical Dentistry, Department of Diagnostics, Poznan University of Medical Sciences, Bukowska 70, 60-812 Poznan, Poland $1 https://orcid.org/0000000280699004
- 773 0_
- $w MED00180386 $t Medicina $x 1648-9144 $g Roč. 60, č. 12 (2024)
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39768927 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250415 $b ABA008
- 991 __
- $a 20250429135231 $b ABA008
- 999 __
- $a ok $b bmc $g 2311750 $s 1247649
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2024 $b 60 $c 12 $e 20241212 $i 1648-9144 $m Medicina $n Medicina (Kaunas) $x MED00180386
- GRA __
- $a PPI/STE/2020/1/00014/DEC/02 $p NAWA Polish National Agency for Academic Exchange
- LZP __
- $a Pubmed-20250415