Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report
Language English Country Switzerland Media electronic
Document type Case Reports, Journal Article
Grant support
PPI/STE/2020/1/00014/DEC/02
NAWA Polish National Agency for Academic Exchange
PubMed
39768927
PubMed Central
PMC11676691
DOI
10.3390/medicina60122048
PII: medicina60122048
Knihovny.cz E-resources
- Keywords
- Cone-Beam Computed Tomography, algorithms, diagnosis, dura mater,
- MeSH
- Dura Mater diagnostic imaging MeSH
- Calcinosis * diagnostic imaging MeSH
- Middle Aged MeSH
- Humans MeSH
- Cone-Beam Computed Tomography * methods MeSH
- Artificial Intelligence * MeSH
- Check Tag
- Middle Aged MeSH
- Humans MeSH
- Male MeSH
- Publication type
- Journal Article MeSH
- Case Reports MeSH
Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.
Doctoral School Poznań University of Medical Sciences Bukowska 70 60 812 Poznan Poland
Faculty of Medical Sciences Poznan University of Medical Sciences Fredry 10 61 701 Poznan Poland
Physiology Graduate Program North Carolina State University Raleigh NC 27695 USA
Prestage Department of Poultry Sciences North Carolina State University Raleigh NC 27695 USA
See more in PubMed
Grech R., Grech S., Mizzi A. Intracranial calcifications. A pictorial review. Neuroradiol. J. 2012;25:427–451. doi: 10.1177/197140091202500406. PubMed DOI
Glaister J., Carass A., Pham D.L., Butman J.A., Prince J.L. Falx Cerebri Segmentation via Multi-atlas Boundary Fusion. Med. Image Comput. Comput. Assist. Interv. 2017;10433:92–99. doi: 10.1007/978-3-319-66182-7_11. PubMed DOI PMC
Sakk L. Anatomy of the Cranial and Spinal Meninges. In: Cinalli G., Özek M., Sainte-Rose C., editors. Pediatric Hydrocephalus. Springer; Cham, Switzerland: 2019. pp. 197–237.
Rai R., Iwanaga J., Shokouhi G., Oskouian R.J., Tubbs R.S. The Tentorium Cerebelli: A Comprehensive Review Including Its Anatomy, Embryology, and Surgical Techniques. Cureus. 2018;10:e3079. doi: 10.7759/cureus.3079. PubMed DOI PMC
Ho J., Kleiven S. Can sulci protect the brain from traumatic injury? J. Biomech. 2009;42:2074–2080. doi: 10.1016/j.jbiomech.2009.06.051. Erratum in J. Biomech. 2010, 43, 804. PubMed DOI
Saade C., Najem E., Asmar K., Salman R., El Achkar B., Naffaa L. Intracranial calcifications on CT: An updated review. J. Radiol. Case Rep. 2019;13:1–18. doi: 10.3941/jrcr.v13i8.3633. PubMed DOI PMC
Halstead A.E., Christopher F. Calcification and ossification of the meninges. Arch. Surg. 1923;6:847–857. doi: 10.1001/archsurg.1923.01110190190011. DOI
Sands S.F., Farmer P., Alvarez O., Keller I.A., Gorey M.T., Hyman R.A. Fat within the falx: MR demonstration of falcine bony metaplasia with marrow formation. J. Comput. Assist. Tomogr. 1987;11:602–605. doi: 10.1097/00004728-198707000-00009. PubMed DOI
Celzo F.G., Venstermans C., De Belder F., Van Goethem J., van den Hauwe L., van der Zijden T., Voormolen M., Menovsky T., Maas A., Parizel P.M. Brain stones revisited-between a rock and a hard place. Insights Into Imaging. 2013;4:625–635. doi: 10.1007/s13244-013-0279-z. PubMed DOI PMC
Ogasawara C., Philbrick B.D., Adamson D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines. 2021;9:319. doi: 10.3390/biomedicines9030319. PubMed DOI PMC
Gezercan Y., Acik V., Çavuş G., Ökten A.I., Bilgin E., Millet H., Olmaz B. Six different extremely calcified lesions of the brain: Brain stones. Springerplus. 2016;5:1941. doi: 10.1186/s40064-016-3621-3. PubMed DOI PMC
Hyusein R.R., Atsev S., Boyukliev A., Petrov P.P., Velchev V., Penchev P. Cerebral Calcifications as a Result of Primary Hyperparathyroidism: A Report of a Rare Case. Cureus. 2024;16:e57826. doi: 10.7759/cureus.57826. PubMed DOI PMC
Sharifi M., Yousefi B.T. Idiopathic Dural Optic Nerve Sheath Calcification Associated with Sclerochoroidal Calcification: Case Report and Review of Literatures. Case Rep. Ophthalmol. 2021;12:402–406. doi: 10.1159/000511339. PubMed DOI PMC
Glaister J., Carass A., Pham D.L., Butman J.A., Prince J.L. Automatic falx cerebri and tentorium cerebelli segmentation from Magnetic Resonance Images. Proc. SPIE-Int. Soc. Opt. Eng. 2017;10137:101371D. doi: 10.1117/12.2255640. PubMed DOI PMC
Shukla S., Chug A., Afrashtehfar K.I. Role of Cone Beam Computed Tomography in Diagnosis and Treatment Planning in Dentistry: An Update. J. Int. Soc. Prev. Community Dent. 2017;7((Suppl. S3)):S125–S136. PubMed PMC
Venkatesh E., Elluru S.V. Cone beam computed tomography: Basics and applications in dentistry. J. Istanb. Univ. Fac. Dent. 2017;51((Suppl. S1)):S102–S121. doi: 10.17096/jiufd.00289. PubMed DOI PMC
Tepe R.D., Cakir Karabas H., Erturk A.F., Ozcan I. Physiologic intracranial calcifications incidentally detected on cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022;134:e281–e286. doi: 10.1016/j.oooo.2022.04.050. PubMed DOI
Sedghizadeh P.P., Nguyen M., Enciso R. Intracranial physiological calcifications evaluated with cone beam CT. Dentomaxillofac. Radiol. 2012;41:675–678. doi: 10.1259/dmfr/33077422. PubMed DOI PMC
Putra R.H., Doi C., Yoda N., Astuti E.R., Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac. Radiol. 2022;51:20210197. doi: 10.1259/dmfr.20210197. PubMed DOI PMC
Yoon K., Jeong H.M., Kim J.W., Park J.H., Choi J. AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation. J. Dent. 2024;141:104821. doi: 10.1016/j.jdent.2023.104821. PubMed DOI
Kazimierczak W., Wajer R., Wajer A., Kiian V., Kloska A., Kazimierczak N., Janiszewska-Olszowska J., Serafin Z. Periapical Lesions in Panoramic Radiography and CBCT Imaging—Assessment of AI’s Diagnostic Accuracy. J. Clin. Med. 2024;13:2709. doi: 10.3390/jcm13092709. PubMed DOI PMC
Issa J., Jaber M., Rifai I., Mozdziak P., Kempisty B., Dyszkiewicz-Konwińska M. Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review. Medicina. 2023;59:768. doi: 10.3390/medicina59040768. PubMed DOI PMC
Kazimierczak N., Kazimierczak W., Serafin Z., Nowicki P., Jankowski T., Jankowska A., Janiszewska-Olszowska J. Skeletal facial asymmetry: Reliability of manual and artificial intelligence-driven analysis. Dentomaxillofac. Radiol. 2024;53:52–59. doi: 10.1093/dmfr/twad006. PubMed DOI PMC
Issa J., Olszewski R., Dyszkiewicz-Konwińska M. The Effectiveness of Semi-Automated and Fully Automatic Segmentation for Inferior Alveolar Canal Localization on CBCT Scans: A Systematic Review. Int. J. Environ. Res. Public Health. 2022;19:560. doi: 10.3390/ijerph19010560. PubMed DOI PMC
Ajami M., Tripathi P., Ling H., Mahdian M. Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks. Diagnostics. 2022;12:2537. doi: 10.3390/diagnostics12102537. PubMed DOI PMC
Grigaitis D., Meilunas M. Bildverarbeitung für die Medizin 2007: Algorithmen–Systeme–Anwendungen Proceedings des Workshops vom 25.–27. März 2007 in München. Springer eBooks; Berlin/Heidelberg, Germany: 2007. Automatic Extraction of Symmetry Plane from Falx Cerebri Areas in CT Slices; pp. 267–271. DOI
Shusharina N., Söderberg J., Edmunds D., Löfman F., Shih H., Bortfeld T. Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. Radiother. Oncol. 2020;146:37–43. doi: 10.1016/j.radonc.2020.01.028. PubMed DOI PMC
Angkurawaranon S., Sanorsieng N., Unsrisong K., Inkeaw P., Sripan P., Khumrin P., Angkurawaranon C., Vaniyapong T., Chitapanarux I. A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage. Sci. Rep. 2023;13:9975. doi: 10.1038/s41598-023-37114-z. PubMed DOI PMC
Puzio T., Matera K., Wiśniewski K., Grobelna M., Wanibuchi S., Jaskólski D.J., Bobeff E.J. Automated volumetric evaluation of intracranial compartments and cerebrospinal fluid distribution on emergency trauma head CT scans to quantify mass effect. Front. Neurosci. 2024;18:1341734. doi: 10.3389/fnins.2024.1341734. PubMed DOI PMC
Brown J., Jacobs R., Levring Jäghagen E., Lindh C., Baksi G., Schulze D., Schulze R., European Academy of DentoMaxilloFacial Radiology Basic training requirements for the use of dental CBCT by dentists: A position paper prepared by the European Academy of DentoMaxilloFacial Radiology. Dentomaxillofac. Radiol. 2014;43:20130291. doi: 10.1259/dmfr.20130291. PubMed DOI PMC
Nagarajappa A.K., Dwivedi N., Tiwari R. Artifacts: The downturn of CBCT image. J. Int. Soc. Prev. Community Dent. 2015;5:440–445. doi: 10.4103/2231-0762.170523. PubMed DOI PMC
Li M., Jiang Y., Zhang Y., Zhu H. Medical image analysis using deep learning algorithms. Front. Public Health. 2023;11:1273253. doi: 10.3389/fpubh.2023.1273253. PubMed DOI PMC
Bohr A., Memarzadeh K. Artificial Intelligence in Healthcare. Elsevier eBooks; Amsterdam, The Netherlands: 2020. The rise of artificial intelligence in healthcare applications; pp. 25–60. DOI