• This record comes from PubMed

Artificial Intelligence-Assisted Segmentation of a Falx Cerebri Calcification on Cone-Beam Computed Tomography: A Case Report

. 2024 Dec 12 ; 60 (12) : . [epub] 20241212

Language English Country Switzerland Media electronic

Document type Case Reports, Journal Article

Grant support
PPI/STE/2020/1/00014/DEC/02 NAWA Polish National Agency for Academic Exchange

Intracranial calcifications, particularly within the falx cerebri, serve as crucial diagnostic markers ranging from benign accumulations to signs of severe pathologies. The falx cerebri, a dural fold that separates the cerebral hemispheres, presents challenges in visualization due to its low contrast in standard imaging techniques. Recent advancements in artificial intelligence (AI), particularly in machine learning and deep learning, have significantly transformed radiological diagnostics. This study aims to explore the application of AI in the segmentation and detection of falx cerebri calcifications using Cone-Beam Computed Tomography (CBCT) images through a comprehensive literature review and a detailed case report. The case report presents a 59-year-old patient diagnosed with falx cerebri calcifications whose CBCT images were analyzed using a cloud-based AI platform, demonstrating effectiveness in segmenting these calcifications, although challenges persist in distinguishing these from other cranial structures. A specific search strategy was employed to search electronic databases, yielding four studies exploring AI-based segmentation of the falx cerebri. The review detailed various AI models and their accuracy across different imaging modalities in identifying and segmenting falx cerebri calcifications, also highlighting the gap in publications in this area. In conclusion, further research is needed to improve AI-driven methods for accurately identifying and measuring intracranial calcifications. Advancing AI applications in radiology, particularly for detecting falx cerebri calcifications, could significantly enhance diagnostic precision, support disease monitoring, and inform treatment planning.

See more in PubMed

Grech R., Grech S., Mizzi A. Intracranial calcifications. A pictorial review. Neuroradiol. J. 2012;25:427–451. doi: 10.1177/197140091202500406. PubMed DOI

Glaister J., Carass A., Pham D.L., Butman J.A., Prince J.L. Falx Cerebri Segmentation via Multi-atlas Boundary Fusion. Med. Image Comput. Comput. Assist. Interv. 2017;10433:92–99. doi: 10.1007/978-3-319-66182-7_11. PubMed DOI PMC

Sakk L. Anatomy of the Cranial and Spinal Meninges. In: Cinalli G., Özek M., Sainte-Rose C., editors. Pediatric Hydrocephalus. Springer; Cham, Switzerland: 2019. pp. 197–237.

Rai R., Iwanaga J., Shokouhi G., Oskouian R.J., Tubbs R.S. The Tentorium Cerebelli: A Comprehensive Review Including Its Anatomy, Embryology, and Surgical Techniques. Cureus. 2018;10:e3079. doi: 10.7759/cureus.3079. PubMed DOI PMC

Ho J., Kleiven S. Can sulci protect the brain from traumatic injury? J. Biomech. 2009;42:2074–2080. doi: 10.1016/j.jbiomech.2009.06.051. Erratum in J. Biomech. 2010, 43, 804. PubMed DOI

Saade C., Najem E., Asmar K., Salman R., El Achkar B., Naffaa L. Intracranial calcifications on CT: An updated review. J. Radiol. Case Rep. 2019;13:1–18. doi: 10.3941/jrcr.v13i8.3633. PubMed DOI PMC

Halstead A.E., Christopher F. Calcification and ossification of the meninges. Arch. Surg. 1923;6:847–857. doi: 10.1001/archsurg.1923.01110190190011. DOI

Sands S.F., Farmer P., Alvarez O., Keller I.A., Gorey M.T., Hyman R.A. Fat within the falx: MR demonstration of falcine bony metaplasia with marrow formation. J. Comput. Assist. Tomogr. 1987;11:602–605. doi: 10.1097/00004728-198707000-00009. PubMed DOI

Celzo F.G., Venstermans C., De Belder F., Van Goethem J., van den Hauwe L., van der Zijden T., Voormolen M., Menovsky T., Maas A., Parizel P.M. Brain stones revisited-between a rock and a hard place. Insights Into Imaging. 2013;4:625–635. doi: 10.1007/s13244-013-0279-z. PubMed DOI PMC

Ogasawara C., Philbrick B.D., Adamson D.C. Meningioma: A Review of Epidemiology, Pathology, Diagnosis, Treatment, and Future Directions. Biomedicines. 2021;9:319. doi: 10.3390/biomedicines9030319. PubMed DOI PMC

Gezercan Y., Acik V., Çavuş G., Ökten A.I., Bilgin E., Millet H., Olmaz B. Six different extremely calcified lesions of the brain: Brain stones. Springerplus. 2016;5:1941. doi: 10.1186/s40064-016-3621-3. PubMed DOI PMC

Hyusein R.R., Atsev S., Boyukliev A., Petrov P.P., Velchev V., Penchev P. Cerebral Calcifications as a Result of Primary Hyperparathyroidism: A Report of a Rare Case. Cureus. 2024;16:e57826. doi: 10.7759/cureus.57826. PubMed DOI PMC

Sharifi M., Yousefi B.T. Idiopathic Dural Optic Nerve Sheath Calcification Associated with Sclerochoroidal Calcification: Case Report and Review of Literatures. Case Rep. Ophthalmol. 2021;12:402–406. doi: 10.1159/000511339. PubMed DOI PMC

Glaister J., Carass A., Pham D.L., Butman J.A., Prince J.L. Automatic falx cerebri and tentorium cerebelli segmentation from Magnetic Resonance Images. Proc. SPIE-Int. Soc. Opt. Eng. 2017;10137:101371D. doi: 10.1117/12.2255640. PubMed DOI PMC

Shukla S., Chug A., Afrashtehfar K.I. Role of Cone Beam Computed Tomography in Diagnosis and Treatment Planning in Dentistry: An Update. J. Int. Soc. Prev. Community Dent. 2017;7((Suppl. S3)):S125–S136. PubMed PMC

Venkatesh E., Elluru S.V. Cone beam computed tomography: Basics and applications in dentistry. J. Istanb. Univ. Fac. Dent. 2017;51((Suppl. S1)):S102–S121. doi: 10.17096/jiufd.00289. PubMed DOI PMC

Tepe R.D., Cakir Karabas H., Erturk A.F., Ozcan I. Physiologic intracranial calcifications incidentally detected on cone beam computed tomography. Oral Surg. Oral Med. Oral Pathol. Oral Radiol. 2022;134:e281–e286. doi: 10.1016/j.oooo.2022.04.050. PubMed DOI

Sedghizadeh P.P., Nguyen M., Enciso R. Intracranial physiological calcifications evaluated with cone beam CT. Dentomaxillofac. Radiol. 2012;41:675–678. doi: 10.1259/dmfr/33077422. PubMed DOI PMC

Putra R.H., Doi C., Yoda N., Astuti E.R., Sasaki K. Current applications and development of artificial intelligence for digital dental radiography. Dentomaxillofac. Radiol. 2022;51:20210197. doi: 10.1259/dmfr.20210197. PubMed DOI PMC

Yoon K., Jeong H.M., Kim J.W., Park J.H., Choi J. AI-based dental caries and tooth number detection in intraoral photos: Model development and performance evaluation. J. Dent. 2024;141:104821. doi: 10.1016/j.jdent.2023.104821. PubMed DOI

Kazimierczak W., Wajer R., Wajer A., Kiian V., Kloska A., Kazimierczak N., Janiszewska-Olszowska J., Serafin Z. Periapical Lesions in Panoramic Radiography and CBCT Imaging—Assessment of AI’s Diagnostic Accuracy. J. Clin. Med. 2024;13:2709. doi: 10.3390/jcm13092709. PubMed DOI PMC

Issa J., Jaber M., Rifai I., Mozdziak P., Kempisty B., Dyszkiewicz-Konwińska M. Diagnostic Test Accuracy of Artificial Intelligence in Detecting Periapical Periodontitis on Two-Dimensional Radiographs: A Retrospective Study and Literature Review. Medicina. 2023;59:768. doi: 10.3390/medicina59040768. PubMed DOI PMC

Kazimierczak N., Kazimierczak W., Serafin Z., Nowicki P., Jankowski T., Jankowska A., Janiszewska-Olszowska J. Skeletal facial asymmetry: Reliability of manual and artificial intelligence-driven analysis. Dentomaxillofac. Radiol. 2024;53:52–59. doi: 10.1093/dmfr/twad006. PubMed DOI PMC

Issa J., Olszewski R., Dyszkiewicz-Konwińska M. The Effectiveness of Semi-Automated and Fully Automatic Segmentation for Inferior Alveolar Canal Localization on CBCT Scans: A Systematic Review. Int. J. Environ. Res. Public Health. 2022;19:560. doi: 10.3390/ijerph19010560. PubMed DOI PMC

Ajami M., Tripathi P., Ling H., Mahdian M. Automated Detection of Cervical Carotid Artery Calcifications in Cone Beam Computed Tomographic Images Using Deep Convolutional Neural Networks. Diagnostics. 2022;12:2537. doi: 10.3390/diagnostics12102537. PubMed DOI PMC

Grigaitis D., Meilunas M. Bildverarbeitung für die Medizin 2007: Algorithmen–Systeme–Anwendungen Proceedings des Workshops vom 25.–27. März 2007 in München. Springer eBooks; Berlin/Heidelberg, Germany: 2007. Automatic Extraction of Symmetry Plane from Falx Cerebri Areas in CT Slices; pp. 267–271. DOI

Shusharina N., Söderberg J., Edmunds D., Löfman F., Shih H., Bortfeld T. Automated delineation of the clinical target volume using anatomically constrained 3D expansion of the gross tumor volume. Radiother. Oncol. 2020;146:37–43. doi: 10.1016/j.radonc.2020.01.028. PubMed DOI PMC

Angkurawaranon S., Sanorsieng N., Unsrisong K., Inkeaw P., Sripan P., Khumrin P., Angkurawaranon C., Vaniyapong T., Chitapanarux I. A comparison of performance between a deep learning model with residents for localization and classification of intracranial hemorrhage. Sci. Rep. 2023;13:9975. doi: 10.1038/s41598-023-37114-z. PubMed DOI PMC

Puzio T., Matera K., Wiśniewski K., Grobelna M., Wanibuchi S., Jaskólski D.J., Bobeff E.J. Automated volumetric evaluation of intracranial compartments and cerebrospinal fluid distribution on emergency trauma head CT scans to quantify mass effect. Front. Neurosci. 2024;18:1341734. doi: 10.3389/fnins.2024.1341734. PubMed DOI PMC

Brown J., Jacobs R., Levring Jäghagen E., Lindh C., Baksi G., Schulze D., Schulze R., European Academy of DentoMaxilloFacial Radiology Basic training requirements for the use of dental CBCT by dentists: A position paper prepared by the European Academy of DentoMaxilloFacial Radiology. Dentomaxillofac. Radiol. 2014;43:20130291. doi: 10.1259/dmfr.20130291. PubMed DOI PMC

Nagarajappa A.K., Dwivedi N., Tiwari R. Artifacts: The downturn of CBCT image. J. Int. Soc. Prev. Community Dent. 2015;5:440–445. doi: 10.4103/2231-0762.170523. PubMed DOI PMC

Li M., Jiang Y., Zhang Y., Zhu H. Medical image analysis using deep learning algorithms. Front. Public Health. 2023;11:1273253. doi: 10.3389/fpubh.2023.1273253. PubMed DOI PMC

Bohr A., Memarzadeh K. Artificial Intelligence in Healthcare. Elsevier eBooks; Amsterdam, The Netherlands: 2020. The rise of artificial intelligence in healthcare applications; pp. 25–60. DOI

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...