-
Je něco špatně v tomto záznamu ?
Activated alpha 9 integrin expression enables sensory pathway reconstruction after spinal cord injury
K. Stepankova, B. Smejkalova, L. Machova Urdzikova, K. Haveliková, F. de Winter, S. Suchankova, J. Verhaagen, V. Herynek, R. Turecek, J. Kwok, J. Fawcett, P. Jendelova
Jazyk angličtina Země Anglie, Velká Británie
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
320421 and 102122
Grantová Agentura, Univerzita Karlova
320421 and 102122
Grantová Agentura, Univerzita Karlova
NL-25/20
Wings for Life, Netherlands
MR/R004463/1, G105497
Medical Research Council - United Kingdom
P172
International Foundation for Research in Paraplegia
GB-04/19
Wings for Life
CZ.02.01.01/00/22_008/0004562
Ministerstvo Školství, Mládeže a Tělovýchovy
24-11193S
Grantová Agentura České Republiky
NLK
BioMedCentral
od 2013-12-01
BioMedCentral Open Access
od 2013
Directory of Open Access Journals
od 2013
Free Medical Journals
od 2013
PubMed Central
od 2013
Europe PubMed Central
od 2013
ProQuest Central
od 2015-01-01
Open Access Digital Library
od 2013-01-01
Open Access Digital Library
od 2013-01-01
Health & Medicine (ProQuest)
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2013
Springer Nature OA/Free Journals
od 2013-12-01
- MeSH
- axony MeSH
- Dependovirus genetika MeSH
- genetické vektory MeSH
- krysa rodu rattus MeSH
- modely nemocí na zvířatech MeSH
- myši MeSH
- nervové receptory * metabolismus fyziologie patologie MeSH
- obnova funkce fyziologie MeSH
- poranění míchy * patologie patofyziologie metabolismus MeSH
- potkani Sprague-Dawley MeSH
- proteiny nervové tkáně metabolismus genetika MeSH
- regenerace nervu * fyziologie MeSH
- tenascin metabolismus MeSH
- zvířata MeSH
- Check Tag
- krysa rodu rattus MeSH
- myši MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
Full recovery from spinal cord injury requires axon regeneration to re-establish motor and sensory pathways. In mammals, the failure of sensory and motor axon regeneration has many causes intrinsic and extrinsic to neurons, amongst which is the lack of adhesion molecules needed to interact with the damaged spinal cord. This study addressed this limitation by expressing the integrin adhesion molecule α9, along with its activator kindlin-1, in sensory neurons via adeno-associated viral (AAV) vectors. This enabled sensory axons to regenerate through spinal cord injuries and extend to the brainstem, restoring sensory pathways, touch sensation and sensory behaviours. One of the integrin ligands in the injured spinal cord is tenascin-C, which serves as a substrate for α9β1 integrin, a key receptor in developmental axon guidance. However, the adult PNS and CNS neurons lack this receptor. Sensory neurons were transduced with α9 integrin (which pairs with endogenous β1 to form a α9β1 tenascin receptor) together with the integrin activator kindlin-1. Regeneration from sensory neurons transduced with α9integrin and kindlin-1 was examined after C4 and after T10 dorsal column lesions with C6,7 and L4,5 sensory ganglia injected with AAV1 vectors. In animals treated with α9 integrin and kindlin-1, sensory axons regenerated through tenascin-C-expressing connective tissue strands and bridges across the lesions and then re-entered the CNS tissue. Many axons regenerated rostrally to the level of the medulla. Axons grew through the dorsal grey matter rather than their normal pathway the dorsal columns. Growth was slow, axons taking 12 weeks to grow from T10 to the medulla, a distance of 4-5 cm. Functional recovery was confirmed through cFos activation in neurons rostral to the injury after nerve stimulation and VGLUT1/2 staining indicating new synapse formation above the lesion. Behavioural recovery was seen in both heat and mechanical sensation, as well as tape removal tests. This approach demonstrates the potential of integrin-based therapies for long distance sensory axon regeneration and functional recovery following thoracic and partial recovery after cervical spinal cord injury.
2nd Faculty of Medicine Charles University 15006 Prague Czech Republic
Faculty of Biological Sciences University of Leeds Leeds LS2 9JT UK
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25015805
- 003
- CZ-PrNML
- 005
- 20250731091235.0
- 007
- ta
- 008
- 250708s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1186/s40478-025-01995-0 $2 doi
- 035 __
- $a (PubMed)40317093
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Stepankova, Katerina $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic $u 2nd Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
- 245 10
- $a Activated alpha 9 integrin expression enables sensory pathway reconstruction after spinal cord injury / $c K. Stepankova, B. Smejkalova, L. Machova Urdzikova, K. Haveliková, F. de Winter, S. Suchankova, J. Verhaagen, V. Herynek, R. Turecek, J. Kwok, J. Fawcett, P. Jendelova
- 520 9_
- $a Full recovery from spinal cord injury requires axon regeneration to re-establish motor and sensory pathways. In mammals, the failure of sensory and motor axon regeneration has many causes intrinsic and extrinsic to neurons, amongst which is the lack of adhesion molecules needed to interact with the damaged spinal cord. This study addressed this limitation by expressing the integrin adhesion molecule α9, along with its activator kindlin-1, in sensory neurons via adeno-associated viral (AAV) vectors. This enabled sensory axons to regenerate through spinal cord injuries and extend to the brainstem, restoring sensory pathways, touch sensation and sensory behaviours. One of the integrin ligands in the injured spinal cord is tenascin-C, which serves as a substrate for α9β1 integrin, a key receptor in developmental axon guidance. However, the adult PNS and CNS neurons lack this receptor. Sensory neurons were transduced with α9 integrin (which pairs with endogenous β1 to form a α9β1 tenascin receptor) together with the integrin activator kindlin-1. Regeneration from sensory neurons transduced with α9integrin and kindlin-1 was examined after C4 and after T10 dorsal column lesions with C6,7 and L4,5 sensory ganglia injected with AAV1 vectors. In animals treated with α9 integrin and kindlin-1, sensory axons regenerated through tenascin-C-expressing connective tissue strands and bridges across the lesions and then re-entered the CNS tissue. Many axons regenerated rostrally to the level of the medulla. Axons grew through the dorsal grey matter rather than their normal pathway the dorsal columns. Growth was slow, axons taking 12 weeks to grow from T10 to the medulla, a distance of 4-5 cm. Functional recovery was confirmed through cFos activation in neurons rostral to the injury after nerve stimulation and VGLUT1/2 staining indicating new synapse formation above the lesion. Behavioural recovery was seen in both heat and mechanical sensation, as well as tape removal tests. This approach demonstrates the potential of integrin-based therapies for long distance sensory axon regeneration and functional recovery following thoracic and partial recovery after cervical spinal cord injury.
- 650 _2
- $a zvířata $7 D000818
- 650 12
- $a poranění míchy $x patologie $x patofyziologie $x metabolismus $7 D013119
- 650 12
- $a regenerace nervu $x fyziologie $7 D009416
- 650 12
- $a nervové receptory $x metabolismus $x fyziologie $x patologie $7 D011984
- 650 _2
- $a obnova funkce $x fyziologie $7 D020127
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a krysa rodu Rattus $7 D051381
- 650 _2
- $a modely nemocí na zvířatech $7 D004195
- 650 _2
- $a proteiny nervové tkáně $x metabolismus $x genetika $7 D009419
- 650 _2
- $a axony $7 D001369
- 650 _2
- $a myši $7 D051379
- 650 _2
- $a Dependovirus $x genetika $7 D000229
- 650 _2
- $a potkani Sprague-Dawley $7 D017207
- 650 _2
- $a genetické vektory $7 D005822
- 650 _2
- $a tenascin $x metabolismus $7 D019063
- 655 _2
- $a časopisecké články $7 D016428
- 655 _2
- $a práce podpořená grantem $7 D013485
- 655 _2
- $a Research Support, U.S. Gov't, Non-P.H.S. $7 D013486
- 700 1_
- $a Smejkalova, Barbora $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic $u 2nd Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
- 700 1_
- $a Machova Urdzikova, Lucia $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
- 700 1_
- $a Haveliková, Katerina $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic $u 2nd Faculty of Medicine, Charles University, 15006, Prague, Czech Republic
- 700 1_
- $a de Winter, Fred $u Laboratory for Regeneration of Sensorimotor Systems, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105BA, Amsterdam, The Netherlands
- 700 1_
- $a Suchankova, Stepanka $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
- 700 1_
- $a Verhaagen, Joost $u Laboratory for Regeneration of Sensorimotor Systems, The Netherlands Institute for Neuroscience, Royal Netherlands Academy of Arts and Sciences (KNAW), 1105BA, Amsterdam, The Netherlands
- 700 1_
- $a Herynek, Vit $u Center for Advanced Preclinical Imaging (CAPI), First Faculty of Medicine, Charles University, 12000, Prague 2, Czech Republic
- 700 1_
- $a Turecek, Rostislav $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic
- 700 1_
- $a Kwok, Jessica $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic $u Faculty of Biological Sciences, University of Leeds, Leeds, LS2 9JT, UK
- 700 1_
- $a Fawcett, James $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic $u John van Geest Centre for Brain Repair, Department of Clinical Neurosciences, University of Cambridge, Cambridge, CB2 0PY, UK
- 700 1_
- $a Jendelova, Pavla $u Institute of Experimental Medicine Czech Academy of Science, Videnska 1083, 14220, Prague 4, Czech Republic. pavla.jendelova@iem.cas.cz
- 773 0_
- $w MED00209779 $t Acta neuropathologica communications $x 2051-5960 $g Roč. 13, č. 1 (2025), s. 89
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40317093 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091230 $b ABA008
- 999 __
- $a ok $b bmc $g 2366560 $s 1252930
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 13 $c 1 $d 89 $e 20250502 $i 2051-5960 $m Acta neuropathologica communications $n Acta Neuropathol Commun $x MED00209779
- GRA __
- $a 320421 and 102122 $p Grantová Agentura, Univerzita Karlova
- GRA __
- $a 320421 and 102122 $p Grantová Agentura, Univerzita Karlova
- GRA __
- $a NL-25/20 $p Wings for Life, Netherlands
- GRA __
- $a MR/R004463/1, G105497 $p Medical Research Council $2 United Kingdom
- GRA __
- $a P172 $p International Foundation for Research in Paraplegia
- GRA __
- $a GB-04/19 $p Wings for Life
- GRA __
- $a CZ.02.01.01/00/22_008/0004562 $p Ministerstvo Školství, Mládeže a Tělovýchovy
- GRA __
- $a 24-11193S $p Grantová Agentura České Republiky
- LZP __
- $a Pubmed-20250708