• Something wrong with this record ?

Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts

F. Haque, A. Chen, N. Lay, J. Carrasquillo, E. Mena, L. Lindenberg, JE. Segal, PC. Eclarinal, S. Talvacchio, A. Derkyi, PL. Choyke, K. Pacak, RN. Kaplan, FI. Lin, B. Turkbey, SA. Harmon

. 2025 ; 190 (-) : 110052. [pub] 20250323

Language English Country United States

Document type Journal Article, Validation Study

Grant support
Z99 CA999999 Intramural NIH HHS - United States

BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.

References provided by Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25015899
003      
CZ-PrNML
005      
20250731091336.0
007      
ta
008      
250708e20250323xxu f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.compbiomed.2025.110052 $2 doi
035    __
$a (PubMed)40127518
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a xxu
100    1_
$a Haque, Fahmida $u Artificial Intelligence Resource, National Cancer Institute, National Institute of Health, Bethesda, MD, 20814, USA
245    10
$a Development and validation of pan-cancer lesion segmentation AI-model for whole-body 18F-FDG PET/CT in diverse clinical cohorts / $c F. Haque, A. Chen, N. Lay, J. Carrasquillo, E. Mena, L. Lindenberg, JE. Segal, PC. Eclarinal, S. Talvacchio, A. Derkyi, PL. Choyke, K. Pacak, RN. Kaplan, FI. Lin, B. Turkbey, SA. Harmon
520    9_
$a BACKGROUND: This study develops a deep learning-based automated lesion segmentation model for whole-body 3D18F-fluorodeoxyglucose (FDG)-Position emission tomography (PET) with computed tomography (CT) images agnostic to disease location and site. METHOD: A publicly available lesion-annotated dataset of 1014 whole-body FDG-PET/CT images was used to train, validate, and test (70:10:20) eight configurations with 3D U-Net as the backbone architecture. The best-performing model on the test set was further evaluated on 3 different unseen cohorts consisting of osteosarcoma or neuroblastoma (OS cohort) (n = 13), pediatric solid tumors (ST cohort) (n = 14), and adult Pheochromocytoma/Paraganglioma (PHEO cohort) (n = 40). Both lesion-level and patient-level statistical analyses were conducted to validate the performance of the model on different cohorts. RESULTS: The best performing 3D full resolution nnUNet model achieved a lesion-level sensitivity and DISC of 71.70 % and 0.40 for the test set, 97.83 % and 0.73 for ST, 40.15 % and 0.36 for OS, and 78.37 % and 0.50 for the PHEO cohort. For the test set and PHEO cohort, the model has missed small volume and lower uptake lesions (p < 0.01), whereas no statistically significant differences (p > 0.05) were found in the false positive (FP) and false negative lesions volume and uptake for the OS and ST cohort. The predicted total lesion glycolysis is slightly higher than the ground truth because of FP calls, which experts can easily check and reject. CONCLUSION: The developed deep learning-based automated lesion segmentation AI model which utilizes 3D_FullRes configuration of the nnUNet framework showed promising and reliable performance for the whole-body FDG-PET/CT images.
650    _2
$a lidé $7 D006801
650    12
$a fluorodeoxyglukosa F18 $7 D019788
650    12
$a PET/CT $x metody $7 D000072078
650    12
$a nádory $x diagnostické zobrazování $7 D009369
650    _2
$a ženské pohlaví $7 D005260
650    12
$a celotělové zobrazování $x metody $7 D051598
650    _2
$a mužské pohlaví $7 D008297
650    _2
$a dospělí $7 D000328
650    12
$a deep learning $7 D000077321
650    _2
$a dítě $7 D002648
650    _2
$a kohortové studie $7 D015331
650    12
$a počítačové zpracování obrazu $x metody $7 D007091
650    _2
$a lidé středního věku $7 D008875
650    _2
$a mladiství $7 D000293
655    _2
$a časopisecké články $7 D016428
655    _2
$a validační studie $7 D023361
700    1_
$a Chen, Alex $u Artificial Intelligence Resource, National Cancer Institute, National Institute of Health, Bethesda, MD, 20814, USA
700    1_
$a Lay, Nathan $u Artificial Intelligence Resource, National Cancer Institute, National Institute of Health, Bethesda, MD, 20814, USA
700    1_
$a Carrasquillo, Jorge $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Mena, Esther $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Lindenberg, Liza $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Segal, Julia E $u Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
700    1_
$a Eclarinal, Philip C $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Talvacchio, Sara $u Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
700    1_
$a Derkyi, Alberta $u Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA
700    1_
$a Choyke, Peter L $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Pacak, Karel $u Section on Medical Neuroendocrinology National Institute of Child Health and Human Development, National Institutes of Health, Bethesda, 20892, MD, USA; AKESO, Prague 5, Czech Republic
700    1_
$a Kaplan, Rosandra N $u Pediatric Oncology Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Lin, Frank I $u Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Turkbey, Baris $u Artificial Intelligence Resource, National Cancer Institute, National Institute of Health, Bethesda, MD, 20814, USA; Molecular Imaging Branch, National Cancer Institute, National Institute of Health, Bethesda, MD, 20892, USA
700    1_
$a Harmon, Stephanie A $u Artificial Intelligence Resource, National Cancer Institute, National Institute of Health, Bethesda, MD, 20814, USA
773    0_
$w MED00001218 $t Computers in biology and medicine $x 1879-0534 $g Roč. 190 (20250323), s. 110052
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40127518 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091330 $b ABA008
999    __
$a ok $b bmc $g 2366617 $s 1253024
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 190 $c - $d 110052 $e 20250323 $i 1879-0534 $m Computers in biology and medicine $n Comput Biol Med $x MED00001218
GRA    __
$a Z99 CA999999 $p Intramural NIH HHS $2 United States
LZP    __
$a Pubmed-20250708

Find record

Citation metrics

Loading data ...

Archiving options

Loading data ...