-
Something wrong with this record ?
A fast all-optical 3D photoacoustic scanner for clinical vascular imaging
NT. Huynh, E. Zhang, O. Francies, F. Kuklis, T. Allen, J. Zhu, O. Abeyakoon, F. Lucka, M. Betcke, J. Jaros, S. Arridge, B. Cox, AA. Plumb, P. Beard
Language English Country England, Great Britain
Document type Journal Article
Grant support
Wellcome Trust - United Kingdom
- MeSH
- Skin blood supply MeSH
- Humans MeSH
- Microvessels diagnostic imaging MeSH
- Photoacoustic Techniques * methods instrumentation MeSH
- Arthritis, Rheumatoid diagnostic imaging MeSH
- Imaging, Three-Dimensional * methods instrumentation MeSH
- Check Tag
- Humans MeSH
- Publication type
- Journal Article MeSH
The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
Centrum Wiskunde and Informatica Amsterdam the Netherlands
Department of Computer Science University College London London UK
Department of Medical Physics and Biomedical Engineering University College London London UK
Faculty of Information Technology Brno University of Technology Brno Czech Republic
Imperial College Healthcare NHS Trust London UK
University College London Hospital NHS Foundation Trust London UK
Wellcome EPSRC Centre for Interventional and Surgical Sciences University College London London UK
References provided by Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25016002
- 003
- CZ-PrNML
- 005
- 20250731091433.0
- 007
- ta
- 008
- 250708s2025 enk f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1038/s41551-024-01247-x $2 doi
- 035 __
- $a (PubMed)39349585
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a enk
- 100 1_
- $a Huynh, N T $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK $u Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK $1 https://orcid.org/0000000174005777
- 245 12
- $a A fast all-optical 3D photoacoustic scanner for clinical vascular imaging / $c NT. Huynh, E. Zhang, O. Francies, F. Kuklis, T. Allen, J. Zhu, O. Abeyakoon, F. Lucka, M. Betcke, J. Jaros, S. Arridge, B. Cox, AA. Plumb, P. Beard
- 520 9_
- $a The clinical assessment of microvascular pathologies (in diabetes and in inflammatory skin diseases, for example) requires the visualization of superficial vascular anatomy. Photoacoustic tomography (PAT) scanners based on an all-optical Fabry-Perot ultrasound sensor can provide highly detailed 3D microvascular images, but minutes-long acquisition times have precluded their clinical use. Here we show that scan times can be reduced to a few seconds and even hundreds of milliseconds by parallelizing the optical architecture of the sensor readout, by using excitation lasers with high pulse-repetition frequencies and by exploiting compressed sensing. A PAT scanner with such fast acquisition minimizes motion-related artefacts and allows for the volumetric visualization of individual arterioles, venules, venous valves and millimetre-scale arteries and veins to depths approaching 15 mm, as well as for dynamic 3D images of time-varying tissue perfusion and other haemodynamic events. In exploratory case studies, we used the scanner to visualize and quantify microvascular changes associated with peripheral vascular disease, skin inflammation and rheumatoid arthritis. Fast all-optical PAT may prove useful in cardiovascular medicine, oncology, dermatology and rheumatology.
- 650 12
- $a optoakustické techniky $x metody $x přístrojové vybavení $7 D061088
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a zobrazování trojrozměrné $x metody $x přístrojové vybavení $7 D021621
- 650 _2
- $a kůže $x krevní zásobení $7 D012867
- 650 _2
- $a mikrocévy $x diagnostické zobrazování $7 D055806
- 650 _2
- $a revmatoidní artritida $x diagnostické zobrazování $7 D001172
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Zhang, E $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK $u Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK
- 700 1_
- $a Francies, O $u University College London Hospital NHS Foundation Trust, London, UK $u Imperial College Healthcare NHS Trust, London, UK
- 700 1_
- $a Kuklis, F $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic
- 700 1_
- $a Allen, T $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK $1 https://orcid.org/0000000241390231
- 700 1_
- $a Zhu, J $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK
- 700 1_
- $a Abeyakoon, O $u University College London Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Lucka, F $u Centrum Wiskunde & Informatica, Amsterdam, the Netherlands $1 https://orcid.org/0000000287635177
- 700 1_
- $a Betcke, M $u Department of Computer Science, University College London, London, UK
- 700 1_
- $a Jaros, J $u Faculty of Information Technology, Brno University of Technology, Brno, Czech Republic $1 https://orcid.org/0000000200878804
- 700 1_
- $a Arridge, S $u Department of Computer Science, University College London, London, UK
- 700 1_
- $a Cox, B $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK $1 https://orcid.org/0000000172964093
- 700 1_
- $a Plumb, A A $u University College London Hospital NHS Foundation Trust, London, UK
- 700 1_
- $a Beard, P $u Department of Medical Physics and Biomedical Engineering, University College London, London, UK. paul.beard@ucl.ac.uk $u Wellcome/EPSRC Centre for Interventional and Surgical Sciences, University College London, London, UK. paul.beard@ucl.ac.uk $1 https://orcid.org/0000000177102759
- 773 0_
- $w MED00209449 $t Nature biomedical engineering $x 2157-846X $g Roč. 9, č. 5 (2025), s. 638-655
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/39349585 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20250708 $b ABA008
- 991 __
- $a 20250731091428 $b ABA008
- 999 __
- $a ok $b bmc $g 2366692 $s 1253127
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 9 $c 5 $d 638-655 $e 20240930 $i 2157-846X $m Nature biomedical engineering $n Nat Biomed Eng $x MED00209449
- GRA __
- $p Wellcome Trust $2 United Kingdom
- LZP __
- $a Pubmed-20250708