Detail
Článek
Článek online
FT
Medvik - BMČ
  • Je něco špatně v tomto záznamu ?

Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome

SE. Hile, MH. Weissensteiner, KG. Pytko, J. Dahl, E. Kejnovsky, I. Kejnovská, M. Hedglin, I. Georgakopoulos-Soares, KD. Makova, KA. Eckert

. 2025 ; 53 (8) : . [pub] 20250422

Jazyk angličtina Země Anglie, Velká Británie

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25016059

Grantová podpora
R01 GM136684 NIGMS NIH HHS - United States
21-00580S Czech Science Foundation
CA237153 NIH HHS - United States
R01 CA237153 NCI NIH HHS - United States
R35 GM151945 NIGMS NIH HHS - United States

G-quadruplexes (G4s) are functional elements of the human genome, some of which inhibit DNA replication. We investigated replication of G4s within highly abundant microsatellite (GGGA, GGGT) and transposable element (L1 and SVA) sequences. We found that genome-wide, numerous motifs are located preferentially on the replication leading strand and the transcribed strand templates. We directly tested replicative polymerase ε and δ holoenzyme inhibition at these G4s, compared to low abundant motifs. For all G4s, DNA synthesis inhibition was higher on the G-rich than C-rich strand or control sequence. No single G4 was an absolute block for either holoenzyme; however, the inhibitory potential varied over an order of magnitude. Biophysical analyses showed the motifs form varying topologies, but replicative polymerase inhibition did not correlate with a specific G4 structure. Addition of the G4 stabilizer pyridostatin severely inhibited forward polymerase synthesis specifically on the G-rich strand, enhancing G/C strand asynchrony. Our results reveal that replicative polymerase inhibition at every G4 examined is distinct, causing complementary strand synthesis to become asynchronous, which could contribute to slowed fork elongation. Altogether, we provide critical information regarding how replicative eukaryotic holoenzymes navigate synthesis through G4s naturally occurring thousands of times in functional regions of the human genome.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25016059
003      
CZ-PrNML
005      
20250731091454.0
007      
ta
008      
250708s2025 enk f 000 0|eng||
009      
AR
024    7_
$a 10.1093/nar/gkaf352 $2 doi
035    __
$a (PubMed)40298112
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a enk
100    1_
$a Hile, Suzanne E $u Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States
245    10
$a Replicative DNA polymerase epsilon and delta holoenzymes show wide-ranging inhibition at G-quadruplexes in the human genome / $c SE. Hile, MH. Weissensteiner, KG. Pytko, J. Dahl, E. Kejnovsky, I. Kejnovská, M. Hedglin, I. Georgakopoulos-Soares, KD. Makova, KA. Eckert
520    9_
$a G-quadruplexes (G4s) are functional elements of the human genome, some of which inhibit DNA replication. We investigated replication of G4s within highly abundant microsatellite (GGGA, GGGT) and transposable element (L1 and SVA) sequences. We found that genome-wide, numerous motifs are located preferentially on the replication leading strand and the transcribed strand templates. We directly tested replicative polymerase ε and δ holoenzyme inhibition at these G4s, compared to low abundant motifs. For all G4s, DNA synthesis inhibition was higher on the G-rich than C-rich strand or control sequence. No single G4 was an absolute block for either holoenzyme; however, the inhibitory potential varied over an order of magnitude. Biophysical analyses showed the motifs form varying topologies, but replicative polymerase inhibition did not correlate with a specific G4 structure. Addition of the G4 stabilizer pyridostatin severely inhibited forward polymerase synthesis specifically on the G-rich strand, enhancing G/C strand asynchrony. Our results reveal that replicative polymerase inhibition at every G4 examined is distinct, causing complementary strand synthesis to become asynchronous, which could contribute to slowed fork elongation. Altogether, we provide critical information regarding how replicative eukaryotic holoenzymes navigate synthesis through G4s naturally occurring thousands of times in functional regions of the human genome.
650    12
$a G-kvadruplexy $7 D054856
650    _2
$a lidé $7 D006801
650    12
$a genom lidský $7 D015894
650    12
$a replikace DNA $7 D004261
650    12
$a DNA-polymerasa III $x antagonisté a inhibitory $x metabolismus $7 D004258
650    12
$a DNA-polymerasa II $x antagonisté a inhibitory $x metabolismus $7 D004257
650    _2
$a mikrosatelitní repetice $7 D018895
650    _2
$a holoenzymy $x metabolismus $7 D020035
650    _2
$a DNA $x chemie $7 D004247
650    _2
$a kyseliny pikolinové $x farmakologie $7 D010848
650    _2
$a proteiny vázající poly-ADP-ribosu $7 D000075223
650    _2
$a aminochinoliny $7 D000634
655    _2
$a časopisecké články $7 D016428
700    1_
$a Weissensteiner, Matthias H $u Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States
700    1_
$a Pytko, Kara G $u Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States
700    1_
$a Dahl, Joseph $u National Institute of Environmental Health Sciences, Z01 ES065070, Durham, NC 27709, United States
700    1_
$a Kejnovsky, Eduard $u Department of Plant Developmental Genetics, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
700    1_
$a Kejnovská, Iva $u Department of Biophysics of Nucleic Acids, Institute of Biophysics of the Czech Academy of Sciences, Brno, 61265, Czech Republic
700    1_
$a Hedglin, Mark $u Department of Chemistry, Penn State University Eberly College of Science, University Park, PA 16802, United States $1 https://orcid.org/0000000325991691
700    1_
$a Georgakopoulos-Soares, Ilias $u Department of Biochemistry and Molecular Biology, Penn State University College of Medicine, Hershey, PA, 17033, United States
700    1_
$a Makova, Kateryna D $u Department of Biology, Penn State University Eberly College of Science, University Park, PA 16802, United States $1 https://orcid.org/0000000262129526
700    1_
$a Eckert, Kristin A $u Department of Pathology, The Jake Gittlen Laboratories for Cancer Research, Penn State University College of Medicine, Hershey, PA 17033, United States $1 https://orcid.org/0000000286595062
773    0_
$w MED00003554 $t Nucleic acids research $x 1362-4962 $g Roč. 53, č. 8 (2025)
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40298112 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20250708 $b ABA008
991    __
$a 20250731091449 $b ABA008
999    __
$a ok $b bmc $g 2366720 $s 1253184
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 53 $c 8 $e 20250422 $i 1362-4962 $m Nucleic acids research $n Nucleic Acids Res $x MED00003554
GRA    __
$a R01 GM136684 $p NIGMS NIH HHS $2 United States
GRA    __
$a 21-00580S $p Czech Science Foundation
GRA    __
$a CA237153 $p NIH HHS $2 United States
GRA    __
$a R01 CA237153 $p NCI NIH HHS $2 United States
GRA    __
$a R35 GM151945 $p NIGMS NIH HHS $2 United States
LZP    __
$a Pubmed-20250708

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...