• Je něco špatně v tomto záznamu ?

SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in intensive care units

J. Pažout, M. Němý, J. Mikeš, J. Jirman, J. Kubr, E. Niebauerová, M. Macík, M. Pech, M. Štajnrt, J. Vaněk, P. Waldauf, V. Zvoníček, L. Vysloužilová, R. Babuška, F. Duška, VentConnect Study group

. 2025 ; 269 (-) : 108927. [pub] 20250621

Jazyk angličtina Země Irsko

Typ dokumentu časopisecké články

Perzistentní odkaz   https://www.medvik.cz/link/bmc25021805

BACKGROUND AND OBJECTIVE: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity. METHODS: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, specificity, and AUC-ROC, compared to expert consensus. RESULTS: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, weighted AUC-ROC: 0.943 [95 % CI: 0.941-0.945]) and PVA classification (weighted accuracy: 89.3 %, weighted AUC-ROC: 0.951 [95 % CI: 0.950-0.953]). It showed high specificity for urgent alarms (99.9 % for level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory effort). CONCLUSIONS: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and improve patient outcomes remains to be tested in clinical trials.

Citace poskytuje Crossref.org

000      
00000naa a2200000 a 4500
001      
bmc25021805
003      
CZ-PrNML
005      
20251023075849.0
007      
ta
008      
251014e20250621ie f 000 0|eng||
009      
AR
024    7_
$a 10.1016/j.cmpb.2025.108927 $2 doi
035    __
$a (PubMed)40582190
040    __
$a ABA008 $b cze $d ABA008 $e AACR2
041    0_
$a eng
044    __
$a ie
100    1_
$a Pažout, Jaroslav $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
245    10
$a SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in intensive care units / $c J. Pažout, M. Němý, J. Mikeš, J. Jirman, J. Kubr, E. Niebauerová, M. Macík, M. Pech, M. Štajnrt, J. Vaněk, P. Waldauf, V. Zvoníček, L. Vysloužilová, R. Babuška, F. Duška, VentConnect Study group
520    9_
$a BACKGROUND AND OBJECTIVE: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity. METHODS: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, specificity, and AUC-ROC, compared to expert consensus. RESULTS: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, weighted AUC-ROC: 0.943 [95 % CI: 0.941-0.945]) and PVA classification (weighted accuracy: 89.3 %, weighted AUC-ROC: 0.951 [95 % CI: 0.950-0.953]). It showed high specificity for urgent alarms (99.9 % for level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory effort). CONCLUSIONS: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and improve patient outcomes remains to be tested in clinical trials.
650    _2
$a lidé $7 D006801
650    12
$a jednotky intenzivní péče $7 D007362
650    12
$a strojové učení $7 D000069550
650    12
$a umělé dýchání $7 D012121
650    12
$a mechanické ventilátory $7 D012122
650    _2
$a ROC křivka $7 D012372
650    _2
$a klinické alarmy $7 D056902
650    _2
$a neuronové sítě $7 D016571
650    _2
$a deep learning $7 D000077321
650    _2
$a reprodukovatelnost výsledků $7 D015203
650    _2
$a asynchronie mezi pacientem a ventilátorem $7 D000097742
655    _2
$a časopisecké články $7 D016428
700    1_
$a Němý, Milan $u Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Blickagången 16, Huddinge 14183, Sweden; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic. Electronic address: milan.nemy@cvut.cz
700    1_
$a Mikeš, Jakub $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
700    1_
$a Jirman, Jan $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
700    1_
$a Kubr, Jan $u Department of Computer Graphics and Interaction, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, Prague 121 35, Czech Republic
700    1_
$a Niebauerová, Eliška $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
700    1_
$a Macík, Miroslav $u Department of Computer Graphics and Interaction, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, Prague 121 35, Czech Republic
700    1_
$a Pech, Michal $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
700    1_
$a Štajnrt, Michal $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
700    1_
$a Vaněk, Jakub $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
700    1_
$a Waldauf, Petr $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
700    1_
$a Zvoníček, Václav $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
700    1_
$a Vysloužilová, Lenka $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
700    1_
$a Babuška, Robert $u Department of Artificial Intelligence, Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic; Cognitive Robotics, Faculty of 3mE, Delft University of Technology, Mekelweg 2, Delft, CD 2628, The Netherlands
700    1_
$a Duška, František $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
710    2_
$a VentConnect Study group
773    0_
$w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 269 (20250621), s. 108927
856    41
$u https://pubmed.ncbi.nlm.nih.gov/40582190 $y Pubmed
910    __
$a ABA008 $b sig $c sign $y - $z 0
990    __
$a 20251014 $b ABA008
991    __
$a 20251023075854 $b ABA008
999    __
$a ok $b bmc $g 2416924 $s 1259968
BAS    __
$a 3
BAS    __
$a PreBMC-MEDLINE
BMC    __
$a 2025 $b 269 $c - $d 108927 $e 20250621 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
LZP    __
$a Pubmed-20251014

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...