-
Je něco špatně v tomto záznamu ?
SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in intensive care units
J. Pažout, M. Němý, J. Mikeš, J. Jirman, J. Kubr, E. Niebauerová, M. Macík, M. Pech, M. Štajnrt, J. Vaněk, P. Waldauf, V. Zvoníček, L. Vysloužilová, R. Babuška, F. Duška, VentConnect Study group
Jazyk angličtina Země Irsko
Typ dokumentu časopisecké články
- MeSH
- asynchronie mezi pacientem a ventilátorem MeSH
- deep learning MeSH
- jednotky intenzivní péče * MeSH
- klinické alarmy MeSH
- lidé MeSH
- mechanické ventilátory * MeSH
- neuronové sítě MeSH
- reprodukovatelnost výsledků MeSH
- ROC křivka MeSH
- strojové učení * MeSH
- umělé dýchání * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
BACKGROUND AND OBJECTIVE: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity. METHODS: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, specificity, and AUC-ROC, compared to expert consensus. RESULTS: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, weighted AUC-ROC: 0.943 [95 % CI: 0.941-0.945]) and PVA classification (weighted accuracy: 89.3 %, weighted AUC-ROC: 0.951 [95 % CI: 0.950-0.953]). It showed high specificity for urgent alarms (99.9 % for level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory effort). CONCLUSIONS: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and improve patient outcomes remains to be tested in clinical trials.
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021805
- 003
- CZ-PrNML
- 005
- 20251023075849.0
- 007
- ta
- 008
- 251014e20250621ie f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1016/j.cmpb.2025.108927 $2 doi
- 035 __
- $a (PubMed)40582190
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a ie
- 100 1_
- $a Pažout, Jaroslav $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 245 10
- $a SmartAlert: Machine learning-based patient-ventilator asynchrony detection system in intensive care units / $c J. Pažout, M. Němý, J. Mikeš, J. Jirman, J. Kubr, E. Niebauerová, M. Macík, M. Pech, M. Štajnrt, J. Vaněk, P. Waldauf, V. Zvoníček, L. Vysloužilová, R. Babuška, F. Duška, VentConnect Study group
- 520 9_
- $a BACKGROUND AND OBJECTIVE: Patient-ventilator asynchronies (PVA) are associated with ventilator-induced lung injury and increased mortality. Current detection methods rely on static thresholds, extensive preprocessing, or proprietary ventilator data. This study aimed to develop and validate a fully online, real-time system that detects and classifies PVAs directly from ventilator screen data while alerting clinicians based on severity. METHODS: The SmartAlert system was developed using ventilator screen recordings from ICU patients. It extracts pressure and flow waveforms from video recordings, converts them into time-series data, and employs deep neural networks to classify asynchronies and assign alarm levels from no urgency to most urgent. A dataset of 381,280 double-breath units was independently annotated by two expert intensivists. Two deep learning models were trained: one for alarm prediction and another for asynchrony classification (ineffective triggering, double cycling, high inspiratory effort, no asynchrony). Performance was evaluated using accuracy, sensitivity, specificity, and AUC-ROC, compared to expert consensus. RESULTS: SmartAlert demonstrated strong performance for alarm level prediction (overall accuracy: 83.8 %, weighted AUC-ROC: 0.943 [95 % CI: 0.941-0.945]) and PVA classification (weighted accuracy: 89.3 %, weighted AUC-ROC: 0.951 [95 % CI: 0.950-0.953]). It showed high specificity for urgent alarms (99.9 % for level 3) and PVA types (98.5 % for ineffective triggering, 96.9 % for double cycling, 94.8 % for high inspiratory effort). CONCLUSIONS: We developed and internally validated SmartAlert, an automated system that detects PVAs, classifies severity, and alerts clinicians in real time. Its potential to reduce alarm fatigue, optimize ventilator settings, and improve patient outcomes remains to be tested in clinical trials.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a jednotky intenzivní péče $7 D007362
- 650 12
- $a strojové učení $7 D000069550
- 650 12
- $a umělé dýchání $7 D012121
- 650 12
- $a mechanické ventilátory $7 D012122
- 650 _2
- $a ROC křivka $7 D012372
- 650 _2
- $a klinické alarmy $7 D056902
- 650 _2
- $a neuronové sítě $7 D016571
- 650 _2
- $a deep learning $7 D000077321
- 650 _2
- $a reprodukovatelnost výsledků $7 D015203
- 650 _2
- $a asynchronie mezi pacientem a ventilátorem $7 D000097742
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Němý, Milan $u Division of Clinical Geriatrics, Center for Alzheimer Research, Department of Neurobiology, Care Sciences and Society, Karolinska Institute, Blickagången 16, Huddinge 14183, Sweden; Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic. Electronic address: milan.nemy@cvut.cz
- 700 1_
- $a Mikeš, Jakub $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 700 1_
- $a Jirman, Jan $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
- 700 1_
- $a Kubr, Jan $u Department of Computer Graphics and Interaction, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, Prague 121 35, Czech Republic
- 700 1_
- $a Niebauerová, Eliška $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 700 1_
- $a Macík, Miroslav $u Department of Computer Graphics and Interaction, Faculty of Electrical Engineering, Czech Technical University in Prague, Karlovo náměstí 13, Prague 121 35, Czech Republic
- 700 1_
- $a Pech, Michal $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
- 700 1_
- $a Štajnrt, Michal $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 700 1_
- $a Vaněk, Jakub $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
- 700 1_
- $a Waldauf, Petr $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 700 1_
- $a Zvoníček, Václav $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 700 1_
- $a Vysloužilová, Lenka $u Department of Cognitive Systems and Neurosciences, Czech Institute of Informatics, Robotics and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic
- 700 1_
- $a Babuška, Robert $u Department of Artificial Intelligence, Czech Institute of Informatics, Robotics, and Cybernetics, Czech Technical University in Prague, Jugoslávských partyzánů 1580/3, Prague 160 00, Czech Republic; Cognitive Robotics, Faculty of 3mE, Delft University of Technology, Mekelweg 2, Delft, CD 2628, The Netherlands
- 700 1_
- $a Duška, František $u Department of Anesthesiology and Intensive Care, 3rd Faculty of Medicine, Charles University and Kralovske Vinohrady University Hospital in Prague, Šrobárova 50, Prague 100 34, Czech Republic
- 710 2_
- $a VentConnect Study group
- 773 0_
- $w MED00001214 $t Computer methods and programs in biomedicine $x 1872-7565 $g Roč. 269 (20250621), s. 108927
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40582190 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023075854 $b ABA008
- 999 __
- $a ok $b bmc $g 2416924 $s 1259968
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 269 $c - $d 108927 $e 20250621 $i 1872-7565 $m Computer methods and programs in biomedicine $n Comput Methods Programs Biomed $x MED00001214
- LZP __
- $a Pubmed-20251014