-
Je něco špatně v tomto záznamu ?
Path integration impairments reveal early cognitive changes in subjective cognitive decline
V. Segen, MR. Kabir, A. Streck, J. Slavik, W. Glanz, M. Butryn, E. Newman, Z. Tiganj, T. Wolbers
Jazyk angličtina Země Spojené státy americké
Typ dokumentu časopisecké články
Grantová podpora
R01 AG076198
NIA NIH HHS - United States
NLK
Directory of Open Access Journals
od 2015
Freely Accessible Science Journals
od 2015
PubMed Central
od 2015
Europe PubMed Central
od 2015
Open Access Digital Library
od 2015-01-01
Open Access Digital Library
od 2015-01-01
ROAD: Directory of Open Access Scholarly Resources
od 2015
PubMed
40901947
DOI
10.1126/sciadv.adw6404
Knihovny.cz E-zdroje
- MeSH
- Alzheimerova nemoc patofyziologie MeSH
- Bayesova věta MeSH
- cortex entorhinalis patofyziologie MeSH
- kognice * MeSH
- kognitivní dysfunkce * patofyziologie diagnóza MeSH
- lidé středního věku MeSH
- lidé MeSH
- senioři MeSH
- studie případů a kontrol MeSH
- virtuální realita MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- senioři MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modeling-derived error sources, such as velocity gain, sensory, and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting presymptomatic Alzheimer's disease-related cognitive changes.
Center for Behavioural Brain Sciences Otto von Guericke University Magdeburg Magdeburg 39120 Germany
Department of Computer Science Indiana University Bloomington USA
Department of Psychological and Brain Sciences Indiana University Bloomington USA
The Czech Academy of Sciences Institute of Information Theory and Automation Prague Czech Republic
Citace poskytuje Crossref.org
- 000
- 00000naa a2200000 a 4500
- 001
- bmc25021632
- 003
- CZ-PrNML
- 005
- 20251023075739.0
- 007
- ta
- 008
- 251014s2025 xxu f 000 0|eng||
- 009
- AR
- 024 7_
- $a 10.1126/sciadv.adw6404 $2 doi
- 035 __
- $a (PubMed)40901947
- 040 __
- $a ABA008 $b cze $d ABA008 $e AACR2
- 041 0_
- $a eng
- 044 __
- $a xxu
- 100 1_
- $a Segen, Vladislava $u Aging, Cognition & Technology Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany $1 https://orcid.org/000000026677723X
- 245 10
- $a Path integration impairments reveal early cognitive changes in subjective cognitive decline / $c V. Segen, MR. Kabir, A. Streck, J. Slavik, W. Glanz, M. Butryn, E. Newman, Z. Tiganj, T. Wolbers
- 520 9_
- $a Path integration, the ability to track one's position using self-motion cues, is critically dependent on the grid cell network in the entorhinal cortex, a region vulnerable to early Alzheimer's disease pathology. In this study, we examined path integration performance in individuals with subjective cognitive decline (SCD), a group at increased risk for Alzheimer's disease, and healthy controls using an immersive virtual reality task. We developed a Bayesian computational model to decompose path integration errors into distinct components. SCD participants exhibited significantly higher path integration error, primarily driven by increased memory leak, while other modeling-derived error sources, such as velocity gain, sensory, and reporting noise, remained comparable across groups. Our findings suggest that path integration deficits, specifically memory leak, may serve as an early marker of neurodegeneration in SCD and highlight the potential of self-motion-based navigation tasks for detecting presymptomatic Alzheimer's disease-related cognitive changes.
- 650 _2
- $a lidé $7 D006801
- 650 12
- $a kognitivní dysfunkce $x patofyziologie $x diagnóza $7 D060825
- 650 _2
- $a mužské pohlaví $7 D008297
- 650 _2
- $a ženské pohlaví $7 D005260
- 650 _2
- $a senioři $7 D000368
- 650 _2
- $a Bayesova věta $7 D001499
- 650 _2
- $a Alzheimerova nemoc $x patofyziologie $7 D000544
- 650 12
- $a kognice $7 D003071
- 650 _2
- $a cortex entorhinalis $x patofyziologie $7 D018728
- 650 _2
- $a lidé středního věku $7 D008875
- 650 _2
- $a virtuální realita $7 D000076142
- 650 _2
- $a studie případů a kontrol $7 D016022
- 655 _2
- $a časopisecké články $7 D016428
- 700 1_
- $a Kabir, Md Rysul $u Department of Computer Science, Indiana University, Bloomington, USA
- 700 1_
- $a Streck, Adam $u Institute for Computational Cancer Biology (ICCB), Center for Integrated Oncology (CIO), Cancer Research Center Cologne Essen (CCCE), Faculty of Medicine and University Hospital Cologne, University of Cologne, Köln, Germany
- 700 1_
- $a Slavik, Jakub $u The Czech Academy of Sciences, Institute of Information Theory and Automation, Prague, Czech Republic $1 https://orcid.org/000000016465663X
- 700 1_
- $a Glanz, Wenzel $u Aging, Cognition & Technology Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany $u Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany $1 https://orcid.org/0000000258654176
- 700 1_
- $a Butryn, Michaela $u Aging, Cognition & Technology Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany $u Institute for Cognitive Neurology and Dementia Research, Otto-von-Guericke University, Magdeburg, Germany
- 700 1_
- $a Newman, Ehren $u Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA $1 https://orcid.org/0000000170064112
- 700 1_
- $a Tiganj, Zoran $u Department of Computer Science, Indiana University, Bloomington, USA $u Department of Psychological and Brain Sciences, Indiana University, Bloomington, USA
- 700 1_
- $a Wolbers, Thomas $u Aging, Cognition & Technology Group, German Center for Neurodegenerative Diseases (DZNE), Magdeburg 39120, Germany $u Center for Behavioural Brain Sciences (CBBS), Otto-von-Guericke-University Magdeburg, Magdeburg 39120, Germany $1 https://orcid.org/0000000329438949
- 773 0_
- $w MED00188818 $t Science advances $x 2375-2548 $g Roč. 11, č. 36 (2025), s. eadw6404
- 856 41
- $u https://pubmed.ncbi.nlm.nih.gov/40901947 $y Pubmed
- 910 __
- $a ABA008 $b sig $c sign $y - $z 0
- 990 __
- $a 20251014 $b ABA008
- 991 __
- $a 20251023075744 $b ABA008
- 999 __
- $a ok $b bmc $g 2416815 $s 1259795
- BAS __
- $a 3
- BAS __
- $a PreBMC-MEDLINE
- BMC __
- $a 2025 $b 11 $c 36 $d eadw6404 $e 20250903 $i 2375-2548 $m Science advances $n Sci Adv $x MED00188818
- GRA __
- $a R01 AG076198 $p NIA NIH HHS $2 United States
- LZP __
- $a Pubmed-20251014