Thyroid control of contractile function and calcium handling in neonatal rat heart
Language English Country Germany Media print
Document type Journal Article
PubMed
1630882
DOI
10.1007/bf00374729
Knihovny.cz E-resources
- MeSH
- Thyroid Hormones physiology MeSH
- Rats, Inbred Strains MeSH
- Myocardial Contraction drug effects physiology MeSH
- Rats MeSH
- Myocardium metabolism MeSH
- Animals, Newborn MeSH
- Ryanodine pharmacology MeSH
- Sarcoplasmic Reticulum metabolism MeSH
- Thyroid Gland physiology MeSH
- Body Weight MeSH
- Calcium metabolism MeSH
- Verapamil pharmacology MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Thyroid Hormones MeSH
- Ryanodine MeSH
- Calcium MeSH
- Verapamil MeSH
Newborn rats were rendered hyperthyroid (daily subcutaneous injections of L-triiodothyronine, 10 micrograms 100 g-1 body weight) or hypothyroid (0.05% 6-n-propyl-2-thiouracil in drinking water to nursing mothers) during the first 3 weeks of postnatal life. Compared with the euthyroid group, hyperthyroidism resulted in: (1) cardiac enlargement with right ventricular preponderance, (2) increased cardiac contractile function, (3) increased Ca2+ uptake by the sarcoplasmic reticulum (SR), (4) decreased sensitivity to the negative inotropic effect of verapamil and (5) greater inhibition of contractile function by ryanodine. Hypothyroidism generally resulted in opposite changes. The data suggest that the development of the heart and its contractile function during early postnatal life depends on the plasma level of thyroid hormones. In particular, the relative contribution of the SR and sarcolemmal Ca2+ transport to the control of cardiac contractility seems to be markedly affected by altered thyroid states. The postnatal maturation of the SR function is accelerated in hyperthyroidism but retarded in hypothyroidism. Consequently, hyperthyroid hearts appear to be less dependent and hypothyroid ones more dependent on trans-sarcolemmal Ca2+ fluxes when compared with age-matched euthyroid animals.
See more in PubMed
Acta Endocrinol (Copenh). 1976 Dec;83(4):752-62 PubMed
J Biol Chem. 1984 Oct 25;259(20):12628-32 PubMed
J Clin Invest. 1987 Jul;80(1):88-94 PubMed
Am J Physiol. 1982 May;242(5):H834-43 PubMed
Can J Physiol Pharmacol. 1988 Feb;66(2):159-65 PubMed
Pflugers Arch. 1986 Aug;407(2):142-4 PubMed
J Mol Cell Cardiol. 1989 Jun;21(6):617-24 PubMed
Am J Physiol. 1988 May;254(5 Pt 2):H937-46 PubMed
Basic Res Cardiol. 1990 May-Jun;85(3):297-306 PubMed
Basic Res Cardiol. 1990 Sep-Oct;85(5):429-34 PubMed
Pediatr Res. 1984 Oct;18(10):948-52 PubMed
Endocrinology. 1989 Mar;124(3):1145-52 PubMed
Prog Cardiovasc Dis. 1983 Mar-Apr;25(5):435-64 PubMed
Am J Physiol. 1984 Apr;246(4 Pt 2):H615-25 PubMed
J Biol Chem. 1988 May 25;263(15):6941-4 PubMed
Cardiovasc Res. 1977 May;11(3):231-7 PubMed
J Mol Cell Cardiol. 1989 Dec;21(12):1305-13 PubMed
Basic Res Cardiol. 1987 Jan-Feb;82(1):82-91 PubMed
J Mol Cell Cardiol. 1981 Aug;13(8):725-40 PubMed
J Dev Physiol. 1985 Jun;7(3):207-14 PubMed
Fed Proc. 1982 May;41(7):2238-44 PubMed
Biochem J. 1989 Apr 1;259(1):229-36 PubMed
Biochem J. 1990 Jun 15;268(3):563-9 PubMed
J Biol Chem. 1984 May 25;259(10):6437-46 PubMed
J Physiol. 1973 Feb;228(3):563-82 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 1988 May;337(5):539-44 PubMed
Physiol Bohemoslov. 1989;38(5):473-6 PubMed
Sixty Years of Heart Research in the Institute of Physiology of the Czech Academy of Sciences
Effect of hypo- and hyperthyroid states on phospholipid composition in developing rat heart