Informative value of a mouse model of Klebsiella pneumoniae infection used as a host-resistance assay
Language English Country United States Media print
Document type Journal Article
PubMed
1823654
DOI
10.1007/bf02814501
Knihovny.cz E-resources
- MeSH
- Survival Analysis MeSH
- Klebsiella Infections immunology mortality MeSH
- Klebsiella pneumoniae immunology pathogenicity MeSH
- Lethal Dose 50 MeSH
- Disease Models, Animal MeSH
- Mice, Inbred ICR MeSH
- Mice MeSH
- Immunity, Innate MeSH
- Antibodies, Bacterial blood MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Male MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antibodies, Bacterial MeSH
To obtain a host-resistance assay (HRA) for quantitative evaluation of immunostimulatory effects of various substances, an experimental model of K. pneumoniae inhalatory infection was elaborated. The highly virulent bacterial strain (inhalation LD50 = 400 CFU), applied via the natural route into the respiratory tract elicits an acute infectious process possessing characteristic dynamics. Although the intensity of clearance in the bronchoalveolar lavage after challenge or the mean survival time can be used in individual cases for quantitative resistance determination, the inhalation LD50 values yielded the most standard results. Systemic immunization with the corpuscular K. pneumoniae vaccine provided a high protection expressed by increasing the inhalation LD50 by two orders of magnitude. The antibodies formed, detectable by the ELISA test, are specific for capsular polysaccharide. The type-specific immunity was also found in the protection test. The nonspecific stimulatory effect of the peptidopolysaccharide complex isolated from Listeria monocytogenes (EiF) was manifested at the level of one LD50 only while with higher infectious doses it was absent. However, the adjuvant activity of EiF was significant. The HRA can distinguish and quantitatively determine both nonspecific and specific stimulatory effects of immunomodulatory substances.
See more in PubMed
Aust J Exp Biol Med Sci. 1982 Dec;60(6):629-41 PubMed
J Infect Dis. 1980 Nov;142(5):708-15 PubMed
Infect Immun. 1989 Feb;57(2):546-52 PubMed
Infect Immun. 1989 Jan;57(1):235-8 PubMed
Infect Immun. 1980 Oct;30(1):51-7 PubMed
Int J Immunopharmacol. 1989;11(3):229-35 PubMed
Can J Microbiol. 1985 May;31(5):472-8 PubMed
Fundam Appl Toxicol. 1986 Oct;7(3):387-97 PubMed
J Reticuloendothel Soc. 1983 Jul;34(1):1-11 PubMed
Infect Immun. 1984 Jan;43(1):440-1 PubMed
Fukuoka Igaku Zasshi. 1986 Sep;77(9):465-79 PubMed
Infect Immun. 1982 Jul;37(1):327-35 PubMed
J Clin Invest. 1980 Aug;66(2):194-9 PubMed
J Gen Microbiol. 1980 Jul;119(1):225-9 PubMed
Microbiol Immunol. 1988;32(9):895-906 PubMed
Pharmacol Rev. 1982 Mar;34(1):137-48 PubMed
Surv Immunol Res. 1985;4(2):160-7 PubMed
J Hyg Epidemiol Microbiol Immunol. 1974;18(1):29-41 PubMed
Infect Immun. 1989 Jan;57(1):48-54 PubMed
Folia Microbiol (Praha). 1983;28(5):424-9 PubMed
Infect Immun. 1987 Jan;55(1):44-8 PubMed
Infect Immun. 1983 Apr;40(1):56-61 PubMed
Am Rev Respir Dis. 1977 Oct;116(4):679-84 PubMed
Fundam Appl Toxicol. 1988 Jan;10(1):2-19 PubMed
Folia Microbiol (Praha). 1985;30(3):247-57 PubMed
Infect Immun. 1978 Jun;20(3):804-10 PubMed
Infect Immun. 1987 Jun;55(6):1436-40 PubMed
J Immunol. 1984 Feb;132(2):616-21 PubMed