Informative value of a mouse model of Klebsiella pneumoniae infection used as a host-resistance assay
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
1823654
DOI
10.1007/bf02814501
Knihovny.cz E-zdroje
- MeSH
- analýza přežití MeSH
- infekce bakteriemi rodu Klebsiella imunologie mortalita MeSH
- Klebsiella pneumoniae imunologie patogenita MeSH
- LD50 MeSH
- modely nemocí na zvířatech MeSH
- myši inbrední ICR MeSH
- myši MeSH
- přirozená imunita MeSH
- protilátky bakteriální krev MeSH
- virulence MeSH
- zvířata MeSH
- Check Tag
- mužské pohlaví MeSH
- myši MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- protilátky bakteriální MeSH
To obtain a host-resistance assay (HRA) for quantitative evaluation of immunostimulatory effects of various substances, an experimental model of K. pneumoniae inhalatory infection was elaborated. The highly virulent bacterial strain (inhalation LD50 = 400 CFU), applied via the natural route into the respiratory tract elicits an acute infectious process possessing characteristic dynamics. Although the intensity of clearance in the bronchoalveolar lavage after challenge or the mean survival time can be used in individual cases for quantitative resistance determination, the inhalation LD50 values yielded the most standard results. Systemic immunization with the corpuscular K. pneumoniae vaccine provided a high protection expressed by increasing the inhalation LD50 by two orders of magnitude. The antibodies formed, detectable by the ELISA test, are specific for capsular polysaccharide. The type-specific immunity was also found in the protection test. The nonspecific stimulatory effect of the peptidopolysaccharide complex isolated from Listeria monocytogenes (EiF) was manifested at the level of one LD50 only while with higher infectious doses it was absent. However, the adjuvant activity of EiF was significant. The HRA can distinguish and quantitatively determine both nonspecific and specific stimulatory effects of immunomodulatory substances.
Zobrazit více v PubMed
Aust J Exp Biol Med Sci. 1982 Dec;60(6):629-41 PubMed
J Infect Dis. 1980 Nov;142(5):708-15 PubMed
Infect Immun. 1989 Feb;57(2):546-52 PubMed
Infect Immun. 1989 Jan;57(1):235-8 PubMed
Infect Immun. 1980 Oct;30(1):51-7 PubMed
Int J Immunopharmacol. 1989;11(3):229-35 PubMed
Can J Microbiol. 1985 May;31(5):472-8 PubMed
Fundam Appl Toxicol. 1986 Oct;7(3):387-97 PubMed
J Reticuloendothel Soc. 1983 Jul;34(1):1-11 PubMed
Infect Immun. 1984 Jan;43(1):440-1 PubMed
Fukuoka Igaku Zasshi. 1986 Sep;77(9):465-79 PubMed
Infect Immun. 1982 Jul;37(1):327-35 PubMed
J Clin Invest. 1980 Aug;66(2):194-9 PubMed
J Gen Microbiol. 1980 Jul;119(1):225-9 PubMed
Microbiol Immunol. 1988;32(9):895-906 PubMed
Pharmacol Rev. 1982 Mar;34(1):137-48 PubMed
Surv Immunol Res. 1985;4(2):160-7 PubMed
J Hyg Epidemiol Microbiol Immunol. 1974;18(1):29-41 PubMed
Infect Immun. 1989 Jan;57(1):48-54 PubMed
Folia Microbiol (Praha). 1983;28(5):424-9 PubMed
Infect Immun. 1987 Jan;55(1):44-8 PubMed
Infect Immun. 1983 Apr;40(1):56-61 PubMed
Am Rev Respir Dis. 1977 Oct;116(4):679-84 PubMed
Fundam Appl Toxicol. 1988 Jan;10(1):2-19 PubMed
Folia Microbiol (Praha). 1985;30(3):247-57 PubMed
Infect Immun. 1978 Jun;20(3):804-10 PubMed
Infect Immun. 1987 Jun;55(6):1436-40 PubMed
J Immunol. 1984 Feb;132(2):616-21 PubMed