Characteristics of Pseudomonas aeruginosa strains isolated from urinary tract infections
Language English Country United States Media print
Document type Journal Article
PubMed
7729771
DOI
10.1007/bf02814324
Knihovny.cz E-resources
- MeSH
- Drug Resistance, Microbial MeSH
- Blood Bactericidal Activity MeSH
- Child MeSH
- Adult MeSH
- Hemolysis MeSH
- Hemolysin Proteins biosynthesis MeSH
- Urinary Tract Infections microbiology MeSH
- Rabbits MeSH
- Humans MeSH
- Guinea Pigs MeSH
- Plasmids genetics isolation & purification MeSH
- Child, Preschool MeSH
- Pseudomonas Infections microbiology MeSH
- Pseudomonas aeruginosa genetics isolation & purification pathogenicity MeSH
- In Vitro Techniques MeSH
- Virulence MeSH
- Animals MeSH
- Check Tag
- Child MeSH
- Adult MeSH
- Rabbits MeSH
- Humans MeSH
- Guinea Pigs MeSH
- Child, Preschool MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Hemolysin Proteins MeSH
Thirty-three uropathogenic strains of Pseudomonas aeruginosa were investigated for hemolytic activity in both bacterial broth culture filtrates and isolate lyzates, resistance to bactericidal activity of fresh human serum, resistance to six antibiotics and plasmid DNA profile. Twenty-four of the 33 (73%) bacterial filtrates showed lysis of rabbit erythrocytes, as did the three after guinea-pig erythrocyte treatment. Twelve of 33 isolate lysates showed in parallel lysis of both types of erythrocytes used. Serum resistance was found in 17 (52%) isolates, intermediate resistance in 15 (45 %) isolates and only one isolate showed serum sensitivity. Resistance to antibiotics was detected as follows (in %): tetracycline 94, kanamycin 79, chloramphenicol 76, septrin 73, ampicillin 64, streptomycin 45, gentamicin 18. None of the isolates investigated showed resistance to colistine. With the exception of one isolate, plasmid DNA was detected in all P. aeruginosa strains.
See more in PubMed
J Clin Microbiol. 1982 Sep;16(3):458-63 PubMed
J Hyg Epidemiol Microbiol Immunol. 1991;35(3):289-301 PubMed
Antibiot Khimioter. 1992 Feb;37(2):17-8 PubMed
Infect Immun. 1986 Nov;54(2):379-85 PubMed
Folia Microbiol (Praha). 1992;37(5):360-4 PubMed
APMIS. 1989 Dec;97(12):1068-72 PubMed
Pathol Biol (Paris). 1987 Sep;35(7):1023-6 PubMed
Curr Top Microbiol Immunol. 1985;118:197-218 PubMed
Infect Immun. 1989 Jul;57(7):2187-95 PubMed
J Hosp Infect. 1991 Nov;19(3):153-65 PubMed
J Med Microbiol. 1988 Sep;27(1):11-5 PubMed
Eur J Clin Microbiol Infect Dis. 1992 Aug;11(8):698-703 PubMed
Epidemiol Infect. 1992 Apr;108(2):323-36 PubMed
APMIS Suppl. 1992;28:1-79 PubMed
Wien Med Wochenschr. 1991;141(23-24):533-6 PubMed
Nucleic Acids Res. 1979 Nov 24;7(6):1513-23 PubMed
Folia Microbiol (Praha). 1993;38(5):415-20 PubMed
Pathology. 1991 Apr;23(2):145-8 PubMed
Zentralbl Bakteriol Mikrobiol Hyg A. 1988 Nov;270(1-2):52-65 PubMed
Acta Microbiol Hung. 1991;38(2):107-15 PubMed
J Hosp Infect. 1992 Oct;22(2):129-35 PubMed
Folia Microbiol (Praha). 1979;24(2):143-52 PubMed
J Med Microbiol. 1992 Jan;36(1):4-29 PubMed
J Antimicrob Chemother. 1992 Oct;30(4):429-47 PubMed
Antibiot Chemother (1971). 1989;42:130-53 PubMed
Hinyokika Kiyo. 1992 Jan;38(1):37-41 PubMed
Eur J Epidemiol. 1992 Nov;8(6):865-70 PubMed
JAMA. 1983 Mar 25;249(12):1615-7 PubMed
J Bacteriol. 1982 Oct;152(1):239-45 PubMed
Antibiot Khimioter. 1992 Dec;37(12):39-41 PubMed
Clinical pseudomonas aeruginosa: potential factors of pathogenicity and resistance to antimicrobials
Characteristics of clinical Acinetobacter spp. strains