Peripheral membrane molecules of leukocytes and NK cytotoxicity
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články
PubMed
8262455
DOI
10.1007/bf02898770
Knihovny.cz E-zdroje
- MeSH
- antigeny povrchové analýza MeSH
- buněčná cytotoxicita závislá na protilátkách fyziologie MeSH
- buněčná membrána imunologie MeSH
- buňky NK imunologie MeSH
- cytotoxicita imunologická fyziologie MeSH
- leukocyty imunologie MeSH
- lidé MeSH
- nádorové buňky kultivované MeSH
- TNF-alfa imunologie MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- Názvy látek
- antigeny povrchové MeSH
- TNF-alfa MeSH
Some leukocyte effector cell-surface molecules movement toward the adjoining target cells takes place during the reaction of NK cytotoxicity (NK R). The majority of the moving molecules are usually anchored via a divalent-ion-dependent interaction (PMM-M2+). The released PMM-M2+ can interact also with the secreted tumor necrosis factor alfa (TNF-alpha). In agreement with PMM-M2+ movement, the number of TNF-alpha binding sites on the target cell surface increases during NK R. In addition, antibodies against PMM-M2+, as well as D-mannose- or N-acetyl-D-glucosamine-terminated oligosaccharides of PMM-M2+ inhibit NK R. A more detailed analysis of PMM-M2+ with monoclonal antibodies used flow cytometry and cell-surface biotinylation. Only 3 of 31 tested CD antigens (CD2, LAK-1 and CD45) were passed through this first strongly restricted experimental screening. The EDTA-released LAK-1 antigen, but not CD2 and CD45, interact with TNF-alpha and cell surface via a mannose-inhibitable interaction dependent on the presence of Ca2+ ions. The mechanism of possible participation of PMM-M2+ in cytotoxic events is discussed in relation to Ca2+ influx and subsequent cytolysin secretion.
Zobrazit více v PubMed
Nature. 1981 Jan 15;289(5794):181-4 PubMed
Immunol Today. 1991 Oct;12(10):343-5 PubMed
J Immunol. 1982 Oct;129(4):1782-7 PubMed
Proc Natl Acad Sci U S A. 1983 Sep;80(18):5762-6 PubMed
Gan. 1983 Aug;74(4):554-67 PubMed
J Immunol. 1990 Feb 1;144(3):1004-9 PubMed
J Biol Chem. 1974 Sep 10;249(17):5536-43 PubMed
Eur J Immunol. 1991 Jan;21(1):231-4 PubMed
Immunogenetics. 1981 Mar 1;12(5-6):587-99 PubMed
J Cell Biol. 1989 Apr;108(4):1407-18 PubMed
Mol Immunol. 1986 Nov;23(11):1211-4 PubMed
Proc Natl Acad Sci U S A. 1990 Jul;87(13):5021-5 PubMed
J Exp Med. 1986 Oct 1;164(4):1193-205 PubMed
Int J Cancer. 1989 Mar 15;43(3):501-7 PubMed
J Immunol. 1981 Apr;126(4):1516-21 PubMed
J Immunol. 1987 Mar 1;138(5):1494-501 PubMed
Biochem Biophys Res Commun. 1989 Oct 16;164(1):271-6 PubMed
Immunol Rev. 1981;56:51-88 PubMed
J Immunol. 1990 Feb 15;144(4):1538-43 PubMed
J Biol Chem. 1976 Sep 10;251(17):5292-9 PubMed
J Clin Invest. 1990 Aug;86(2):416-23 PubMed
J Biol Chem. 1980 Jul 25;255(14):6820-5 PubMed
Biochim Biophys Acta. 1985 Oct 30;847(1):108-14 PubMed
Cold Spring Harb Symp Quant Biol. 1976;40:49-63 PubMed
Cancer Res. 1990 Oct 1;50(19):6285-90 PubMed
J Exp Med. 1987 Aug 1;166(2):319-26 PubMed
Biochemistry. 1991 Feb 12;30(6):1561-71 PubMed
Cesk Neurol Neurochir. 1991 Sep;54(4):220-2 PubMed
Nature. 1986 Sep 18-24;323(6085):262-4 PubMed
J Immunol. 1982 Jan;128(1):289-95 PubMed
Mol Immunol. 1983 Dec;20(12):1267-72 PubMed
Eur J Biochem. 1993 May 1;213(3):1303-13 PubMed
Biochemistry. 1984 Feb 28;23(5):815-22 PubMed
J Supramol Struct. 1977;7(3-4):339-51 PubMed
J Membr Biol. 1989 Mar;107(3):277-86 PubMed
J Immunol. 1982 Oct;129(4):1384-90 PubMed
FEBS Lett. 1987 Jun 22;218(1):167-72 PubMed
J Immunol. 1985 Jul;135(1):659-64 PubMed
Eur J Immunol. 1991 Apr;21(4):1077-80 PubMed
Cell Immunol. 1987 May;106(2):223-33 PubMed
Biochem J. 1990 Sep 15;270(3):755-60 PubMed
J Immunol. 1990 Dec 1;145(11):3578-88 PubMed