Superhelical torsion controls DNA interstrand cross-linking by antitumor cis- diamminedichloroplatinum(II)
Language English Country Great Britain, England Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
8918792
PubMed Central
PMC146196
DOI
10.1093/nar/24.20.3918
PII: 6b0193
Knihovny.cz E-resources
- MeSH
- DNA Adducts metabolism MeSH
- Cisplatin pharmacology MeSH
- Nucleic Acid Denaturation MeSH
- Electrophoresis, Agar Gel MeSH
- Enzyme-Linked Immunosorbent Assay MeSH
- Binding, Competitive MeSH
- Nucleic Acid Conformation MeSH
- DNA, Circular metabolism MeSH
- Sodium Cyanide pharmacology MeSH
- Molecular Sequence Data MeSH
- Plasmids drug effects metabolism MeSH
- Antineoplastic Agents pharmacology MeSH
- Cross-Linking Reagents metabolism MeSH
- Restriction Mapping MeSH
- Base Sequence MeSH
- DNA, Superhelical drug effects MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA Adducts MeSH
- Cisplatin MeSH
- DNA, Circular MeSH
- Sodium Cyanide MeSH
- Antineoplastic Agents MeSH
- Cross-Linking Reagents MeSH
- DNA, Superhelical MeSH
Negatively supercoiled, relaxed and linearized forms of pSP73 DNA were modified in cell-free medium by cis-diamminedichloroplatinum(II) (cisplatin). The frequency of interstrand cross-links (ICLs) formed in these DNAs has been determined by: (i) immunochemical analysis; (ii) an assay employing NaCN as a probe of DNA ICLs of cisplatin; (iii) gel electrophoresis under denaturing conditions. At low levels of the modification of DNA (<1 Pt atom fixed per 500 bp) the number of ICLs formed by cisplatin was radically enhanced in supercoiled in comparison with linearized or relaxed DNA. At these low levels of modification, the frequency of ICLs in supercoiled DNA was enhanced with increasing level of negative supercoiling or with decreasing level of modification. In addition, the replication mapping of DNA ICLs of cisplatin was consistent with these lesions being preferentially formed in negatively supercoiled DNA between guanine residues in both the 5'-d(GC)-3' and the 5'-d(CG)-3' sites. Among the DNA adducts of cisplatin the ICL has the markedly greatest capability to unwind the double helix. We suggest that the formation of ICLs of cisplatin is thermodynamically more favored in negatively supercoiled DNA owing mainly to the relaxation of supercoils.
See more in PubMed
Biochemistry. 1989 Feb 21;28(4):1454-61 PubMed
Cancer Res. 1979 Feb;39(2 Pt 1):365-9 PubMed
Biophys Chem. 1990 Apr;35(2-3):179-88 PubMed
Biochem Pharmacol. 1990 Nov 15;40(10):2353-62 PubMed
Biochemistry. 1990 Oct 16;29(41):9522-31 PubMed
EMBO J. 1991 Feb;10(2):387-95 PubMed
Proc Natl Acad Sci U S A. 1991 Mar 1;88(5):1982-5 PubMed
J Mol Biol. 1991 May 20;219(2):145-9 PubMed
Biochemistry. 1991 Aug 13;30(32):8026-35 PubMed
Crit Rev Biochem Mol Biol. 1991;26(2):151-226 PubMed
Cell. 1980 Oct;21(3):773-83 PubMed
Cancer Chemother Pharmacol. 1983;10(3):145-9 PubMed
Ann Intern Med. 1984 May;100(5):704-13 PubMed
Cancer Res. 1984 May;44(5):2043-51 PubMed
Cancer Res. 1987 Jan 1;47(1):31-6 PubMed
Int J Radiat Biol Relat Stud Phys Chem Med. 1986 Dec;50(6):995-1007 PubMed
Pharmacol Ther. 1987;34(2):155-66 PubMed
Biochemistry. 1987 Nov 17;26(23):7229-34 PubMed
Proc Natl Acad Sci U S A. 1988 Jun;85(12):4158-61 PubMed
J Mol Biol. 1991 Sep 5;221(1):107-22 PubMed
Eur J Biochem. 1991 Nov 1;201(3):723-30 PubMed
Biochemistry. 1992 Mar 10;31(9):2508-13 PubMed
Biochem Pharmacol. 1992 Mar 17;43(6):1249-54 PubMed
Methods Enzymol. 1992;212:319-35 PubMed
Eur J Pharmacol. 1992 May 12;226(1):5-13 PubMed
Biochem Biophys Res Commun. 1992 Nov 30;189(1):111-8 PubMed
J Biol Chem. 1993 Feb 5;268(4):2649-54 PubMed
Proc Natl Acad Sci U S A. 1993 Jun 1;90(11):5345-9 PubMed
Biochemistry. 1993 Nov 2;32(43):11676-81 PubMed
J Mol Biol. 1993 Nov 20;234(2):297-301 PubMed
Bioessays. 1994 Jan;16(1):59-68 PubMed
Biochemistry. 1994 May 10;33(18):5404-10 PubMed
Nucleic Acids Res. 1994 Jun 25;22(12):2311-7 PubMed
Proc Natl Acad Sci U S A. 1994 Aug 16;91(17):8147-51 PubMed
Nucleic Acids Res. 1994 Aug 11;22(15):3005-10 PubMed
Nucleic Acids Res. 1994 Sep 25;22(19):3834-9 PubMed
Cancer Res. 1994 Nov 15;54(22):5911-6 PubMed
IARC Sci Publ. 1994;(125):339-48 PubMed
Cancer Chemother Pharmacol. 1995;35(4):323-6 PubMed
Int J Cancer. 1995 Mar 3;60(5):725-9 PubMed
Int J Cancer. 1995 Jul 4;62(1):70-5 PubMed
Mutat Res. 1995 Sep;348(1):25-31 PubMed
Nature. 1995 Oct 19;377(6550):649-52 PubMed
Int J Cancer. 1995 Sep 15;62(6):717-23 PubMed
Biochemistry. 1995 Sep 26;34(38):12369-78 PubMed
Biochemistry. 1995 Nov 28;34(47):15480-6 PubMed
Science. 1995 Dec 15;270(5243):1842-5 PubMed
Biochem Pharmacol. 1996 Mar 8;51(5):629-34 PubMed
Biochem Pharmacol. 1996 Mar 8;51(5):717-21 PubMed
Biochemistry. 1996 Feb 20;35(7):2180-8 PubMed
Biophys Chem. 1990 Apr;35(2-3):129-41 PubMed
DNA interactions of antitumor cisplatin analogs containing enantiomeric amine ligands