Specific [3H]glutamate binding in the cerebral cortex and hippocampus of rats during development: effect of homocysteine-induced seizures
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Analysis of Variance MeSH
- Hippocampus growth & development metabolism MeSH
- Homocysteine MeSH
- Rats MeSH
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid metabolism MeSH
- Quisqualic Acid metabolism MeSH
- Glutamic Acid metabolism MeSH
- Kainic Acid metabolism MeSH
- Cerebral Cortex growth & development metabolism MeSH
- N-Methylaspartate metabolism MeSH
- Rats, Wistar MeSH
- Reference Values MeSH
- Aging metabolism MeSH
- Synaptic Membranes metabolism MeSH
- Tritium MeSH
- Binding Sites MeSH
- Seizures chemically induced metabolism MeSH
- Animals MeSH
- Check Tag
- Rats MeSH
- Male MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- Homocysteine MeSH
- alpha-Amino-3-hydroxy-5-methyl-4-isoxazolepropionic Acid MeSH
- Quisqualic Acid MeSH
- Glutamic Acid MeSH
- Kainic Acid MeSH
- N-Methylaspartate MeSH
- Tritium MeSH
Specific [3H]glutamate binding to synaptic membranes from the cerebral cortex and hippocampus of 7-, 12- and 18-day-old rats was examined, both in control animals and during seizures induced by homocysteine. In the cerebral cortex a transient peak of glutamate binding was observed in 7-day-old group, whereas in the hippocampus it occurred in 12-day-old animals. Total specific [3H]glutamate binding was not influenced by preceding seizure activity in either of the age groups and both the studied regions. NMDA- and QA-sensitive glutamate bindings represent the highest portion of the total binding. Moreover, NMDA-sensitive binding in the cerebral cortex of 7-day-old rats is significantly higher as compared to the two more mature groups. The proportion of individual receptor subtypes on total binding in each age group was not influenced by preceding seizure activity. However, NMDA-sensitive binding in the hippocampus of 12-day-old rats, sacrificed during homocysteine-induced seizures, was significantly increased as compared to corresponding controls. In contrast to the effect of NMDA, AMPA, kainate and quisqualate which displaced to a different extent [3H]glutamate binding, homocysteine had no effect when added to membrane preparations. Similarly, [3H]CPP and [3H]AMPA bindings were not affected in the presence of homocysteine. It thus seems unlikely that homocysteine is an effective agonist for conventional ionotropic glutamate receptors. Its potential activity at some of the modulatory sites at the NMDA receptor channel complex or at metabotropic receptors has to be clarified in further experiments.
See more in PubMed
J Neurochem. 1993 Mar;60(3):1007-11 PubMed
Science. 1990 Aug 3;249(4968):556-60 PubMed
Neuroscience. 1994 May;60(2):337-42 PubMed
J Biol Chem. 1993 Feb 5;268(4):2836-43 PubMed
Brain Res. 1989 Mar 20;482(2):359-64 PubMed
Brain Res. 1981 Oct;254(3):329-39 PubMed
Exp Neurol. 1990 Dec;110(3):237-47 PubMed
Life Sci. 1982 Dec 13;31(24):2683-91 PubMed
Neuroreport. 1992 Dec;3(12):1138-40 PubMed
Neuroreport. 1993 Jan;4(1):45-8 PubMed
Exp Neurol. 1994 Jan;125(1):82-6 PubMed
Neurosci Lett. 1986 Oct 30;71(1):13-8 PubMed
Brain Res Brain Res Rev. 1990 Jan-Apr;15(1):41-70 PubMed
Epilepsia. 1995 Aug;36(8):750-6 PubMed
Trends Pharmacol Sci. 1990 Aug;11(8):334-8 PubMed
J Pharmacol Exp Ther. 1989 Oct;251(1):156-63 PubMed
Neurosci Lett. 1991 Dec 9;133(2):267-70 PubMed
J Neurosci. 1993 Oct;13(10):4445-55 PubMed
Epilepsia. 1985 Jan-Feb;26(1):30-6 PubMed
Neurosci Lett. 1992 May 11;139(1):77-82 PubMed
Proc Natl Acad Sci U S A. 1990 Jul;87(14):5298-302 PubMed
Exp Neurol. 1997 Jun;145(2 Pt 1):442-50 PubMed
Brain Res. 1981 Jan;227(1):37-48 PubMed
Biochem Mol Biol Int. 1993 Aug;30(5):861-6 PubMed
Biochem Biophys Res Commun. 1988 Jun 16;153(2):510-7 PubMed
Neurosci Lett. 1996 Sep 27;216(2):117-20 PubMed
Proc Natl Acad Sci U S A. 1989 Oct;86(20):8157-60 PubMed
Brain Res. 1979 Dec 21;179(1):129-46 PubMed
Neurosci Lett. 1989 Sep 25;104(1-2):161-6 PubMed
Brain Res. 1992 Jul 31;587(1):73-82 PubMed
Neuron. 1991 May;6(5):799-810 PubMed
Science. 1996 Aug 23;273(5278):1112-4 PubMed
Neurosci Lett. 1992 Sep 14;144(1-2):65-9 PubMed
Brain Res. 1986 Nov 5;397(1):137-44 PubMed
Neurochem Int. 1993 Jan;22(1):37-43 PubMed
Neurosci Lett. 1993 May 14;154(1-2):78-80 PubMed
Trends Pharmacol Sci. 1990 Dec;11(12):508-15 PubMed
Agents Actions. 1969 Jul;1(1):9-13 PubMed
Neuron. 1988 Oct;1(8):623-34 PubMed
Trends Pharmacol Sci. 1990 Sep;11(9):379-87 PubMed
Brain Res. 1974 Dec 13;81(3):443-54 PubMed
Neuroscience. 1995 Aug;67(4):881-92 PubMed
J Neurosci. 1991 Feb;11(2):428-34 PubMed
Neuroreport. 1991 Jul;2(7):377-9 PubMed
Neurosci Lett. 1989 May 8;99(3):333-9 PubMed
Exp Neurol. 1994 Dec;130(2):344-50 PubMed
Pharmacol Biochem Behav. 1990 May;36(1):177-81 PubMed
Biomed Biochim Acta. 1986;45(4):495-506 PubMed
Science. 1992 Oct 23;258(5082):597-603 PubMed
Anal Biochem. 1989 Mar;177(2):250-5 PubMed
Brain Res. 1988 Oct 4;461(2):393-6 PubMed
Neurosci Res. 1986 Jul;3(5):430-5 PubMed
J Biol Chem. 1951 Nov;193(1):265-75 PubMed
J Neurosci. 1986 Nov;6(11):3275-83 PubMed
Neuroscience. 1990;35(1):45-51 PubMed
Brain Res. 1990 Aug 27;526(1):113-21 PubMed
Neurochem Int. 1991;18(1):55-62 PubMed
Annu Rev Pharmacol Toxicol. 1989;29:365-402 PubMed
Epilepsy Res. 1992 Jul;12(2):189-96 PubMed
Brain Res. 1988 Aug 30;459(1):200-3 PubMed
Science. 1991 May 10;252(5007):851-3 PubMed
Neuroscience. 1990;35(1):31-43 PubMed