Distribution of peptide-containing neurons in the developing rat right atrium, studied using immunofluorescence and confocal laser scanning
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9239757
DOI
10.1023/a:1022431011019
Knihovny.cz E-zdroje
- MeSH
- fluorescenční protilátková technika nepřímá MeSH
- konfokální mikroskopie MeSH
- krysa rodu Rattus MeSH
- neurony chemie cytologie metabolismus MeSH
- neuropeptid Y analýza MeSH
- neuropeptidy analýza MeSH
- novorozená zvířata MeSH
- potkani Sprague-Dawley MeSH
- srdeční síně cytologie růst a vývoj zranění MeSH
- substance P analýza MeSH
- techniky in vitro MeSH
- vazoaktivní intestinální peptid analýza MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- neuropeptid Y MeSH
- neuropeptidy MeSH
- substance P MeSH
- vazoaktivní intestinální peptid MeSH
The developmental pattern and distribution of peptide-containing neurons in the rat heart right atrium has been studied by indirect immunofluorescence. Antibodies against neuropeptide Y (NPY), substance P (SP), and vasoactive intestinal polypeptide (VIP) were applied to whole-mount stretch preparations of the right atria from hearts of newborn to 40 day-old animals. NPY-like immunoreactivity (L1) was compared with the synaptic vesicle marker SV2 in double immunoincubation studies. The distribution of immunofluorescence was studied by confocal laser scanning microscopy. NPY-L1 and SP-L1 were present throughout the atria already at birth, in contrast to VIP-L1 that was observed at day 10. The postnatal changes of innervation were basically quantitative, with an increase in density of nerve fibres and number of varicosities, while the basic pattern of innervation was essentially established during the first 1-10 days. NPY- and SP-positive bundles of fibres appeared to enter the right atrium along the superior caval vein, having extrinsic origins. Nerve fibres with NPY-L1 colocalized in most nerve terminals with SV2-L1, and showed a developmental pattern similar to that observed for adrenergic neurons earlier. These NPY/SV2 positive fibres probably represent the extrinsic NPY innervation. In addition, NPY-L1 was identified in large intrinsic nerve cells bodies located near the atrioventricular (AV) region. Most of the VIP-L1 was observed in short nerve fibres originating in intrinsic VIP-positive cell bodies, but a few apparently extrinsic VIP-positive fibres were found, probably representing preganglionic parasympathetic neurons. SP in the atria was probably of extrinsic (sensory) origin and no nerve cell bodies with SP-L1 were detected. The results show that the peptidergic innervation in the developing rat right atrium involves both extrinsic and intrinsic peptidergic neurons which may participate in the regulation of neurotransmission in local neuronal circuits.
Zobrazit více v PubMed
Neuroscience. 1981;6(11):2193-204 PubMed
Psychosom Med. 1969 Sep-Oct;31(5):372-88 PubMed
Cell Tissue Res. 1990 Nov;262(2):315-27 PubMed
Peptides. 1994;15(8):1461-9 PubMed
Gen Pharmacol. 1993 May;24(3):539-45 PubMed
Z Zellforsch Mikrosk Anat. 1969;98(1):106-21 PubMed
Brain Res Bull. 1991 Aug;27(2):175-9 PubMed
Histochemie. 1968;14(4):328-34 PubMed
Biol Neonate. 1972;21(1):76-82 PubMed
J Pharmacol Exp Ther. 1988 Jan;244(1):166-72 PubMed
Anat Rec. 1958 Jan;130(1):53-71 PubMed
Annu Rev Physiol. 1981;43:443-53 PubMed
Neuroscience. 1995 Jan;64(2):277-300 PubMed
Annu Rev Biochem. 1971;40:465-500 PubMed
Neurosci Lett. 1989 Oct 9;104(3):269-73 PubMed
Experientia. 1987 Jul 15;43(7):821-32 PubMed
Z Zellforsch Mikrosk Anat. 1971;116(3):319-41 PubMed
Physiol Bohemoslov. 1989;38(2):163-70 PubMed
J Dev Physiol. 1989 May;11(5):305-11 PubMed
Cardiovasc Res. 1994 Dec;28(12):1769-73 PubMed
Prog Clin Biol Res. 1988;275:3-14 PubMed
Tohoku J Exp Med. 1954 Apr 25;59(4):343-56 PubMed
Dev Biol. 1976 Apr;49(2):532-8 PubMed
J Auton Nerv Syst. 1995 Jun 25;53(2-3):166-74 PubMed
Pharmacol Rev. 1983 Jun;35(2):85-141 PubMed
Cardiovasc Res. 1995 Sep;30(3):326-35 PubMed
J Auton Nerv Syst. 1987 Dec;21(2-3):101-7 PubMed
Neurosci Lett. 1980 Dec;20(3):265-9 PubMed
Naunyn Schmiedebergs Arch Pharmacol. 1985 Jan;328(3):331-40 PubMed
J Auton Nerv Syst. 1993 May;43(2):159-70 PubMed
Physiol Bohemoslov. 1982;31(2):113-20 PubMed
Physiol Bohemoslov. 1987;36(5):385-93 PubMed
Br J Pharmacol. 1979 Mar;65(3):431-4 PubMed
Neuroscience. 1984 Aug;12(4):1277-92 PubMed
Am J Physiol. 1992 Jun;262(6 Pt 2):H1663-8 PubMed
Acta Physiol Scand. 1986 Mar;126(3):405-11 PubMed
Peptides. 1987 Mar-Apr;8(2):399-410 PubMed
Circ Res. 1980 May;46(5):690-5 PubMed
Gen Pharmacol. 1988;19(1):1-43 PubMed
Nature. 1980 Apr 10;284(5756):515-21 PubMed
Acta Physiol Scand. 1986 Jan;126(1):67-91 PubMed
Am J Physiol. 1967 Mar;212(3):595-602 PubMed
Acta Physiol Scand. 1995 May;154(1):1-15 PubMed
Brain Res. 1987 Sep 29;422(1):74-82 PubMed
Neuroscience. 1982 Feb;7(2):501-7 PubMed
Dev Neurosci. 1981;4(1):15-24 PubMed
Histochemistry. 1980 Feb;65(2):157-65 PubMed
Cell Tissue Res. 1984;236(3):527-40 PubMed
Neuroscience. 1983 Jul;9(3):605-19 PubMed
J Auton Nerv Syst. 1994 May;47(3):177-87 PubMed
Neuroscience. 1994 Sep;62(1):241-50 PubMed
Catecholaminergic neurons in the rat intrinsic cardiac nervous system
Vasoactive intestinal polypeptide concentrations in heart atria of hypothyroid rats