Conformational properties of DNA strands containing guanine-adenine and thymine-adenine repeats
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9490799
PubMed Central
PMC147418
DOI
10.1093/nar/26.6.1509
PII: gkb259
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- dinukleotidové repetice * MeSH
- DNA chemie genetika MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- heteroduplexy nukleové kyseliny chemie genetika MeSH
- konformace nukleové kyseliny * MeSH
- sekvence nukleotidů MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
- heteroduplexy nukleové kyseliny MeSH
CD spectroscopy and PAGE were used to cooperatively analyze melting conformers of DNA strands containing GA and TA dinucleotide repeats. The 20mer (GA)10 formed a homoduplex in neutral solutions containing physiological concentrations of salts and this homoduplex was not destabilized even in the terminal (GA)3 hexamers of (GA)3(TA)4(GA)3, although the central (TA)4 portion of this oligonucleotide preserved the conformation adopted by (TA)10. This observation demonstrates that homoduplexes of alternating GA and TA sequences can co-exist in a single DNA molecule. Another 20mer, (GATA)5, adopted as a whole either the AT duplex, like (TA)10, or the GA duplex, like (GA)10, and switched between them reversibly. The concentration of salt controlled the conformational switching. Hence, guanine and thymine share significant properties regarding complementarity to adenine, while the TA and GA sequences can stack in at least two mutually compatible ways within the DNA duplexes analyzed here. These properties extend our knowledge of non-canonical structures of DNA.
Zobrazit více v PubMed
Proc Natl Acad Sci U S A. 1992 Oct 1;89(19):9242-6 PubMed
EMBO J. 1992 Oct;11(10):3777-86 PubMed
EMBO J. 1993 Oct;12(10):4029-38 PubMed
J Mol Biol. 1993 Oct 20;233(4):671-81 PubMed
Methods Enzymol. 1995;246:19-34 PubMed
Comput Appl Biosci. 1995 Apr;11(2):195-9 PubMed
Eur J Biochem. 1995 Sep 1;232(2):620-6 PubMed
J Biomol Struct Dyn. 1996 Aug;14(1):57-65 PubMed
Nucleic Acids Res. 1996 Dec 15;24(24):5004-12 PubMed
Nucleic Acids Res. 1996 Dec 15;24(24):5013-20 PubMed
Nucleic Acids Res. 1997 Mar 15;25(6):1100-7 PubMed
J Mol Biol. 1997 Apr 18;267(5):1055-67 PubMed
Biochemistry. 1995 Nov 7;34(44):14293-9 PubMed
Biochemistry. 1995 Nov 7;34(44):14408-15 PubMed
Biophys J. 1995 Nov;69(5):2033-43 PubMed
Nat Struct Biol. 1996 Jan;3(1):32-7 PubMed
J Biomol Struct Dyn. 1996 Jun;13(6):999-1006 PubMed
Biochem Biophys Res Commun. 1968 Dec 9;33(5):739-45 PubMed
Biopolymers. 1970;9(9):1059-77 PubMed
Biopolymers. 1972;11(4):761-79 PubMed
J Biol Chem. 1979 Sep 10;254(17):8125-8 PubMed
J Mol Biol. 1979 Jul 15;131(4):669-80 PubMed
Proc Natl Acad Sci U S A. 1981 Jul;78(7):4063-7 PubMed
J Mol Biol. 1983 May 5;166(1):85-92 PubMed
Science. 1986 Jul 11;233(4760):195-7 PubMed
Nature. 1987 May 7-13;327(6117):20 PubMed
Biochim Biophys Acta. 1989 Dec 22;1009(3):280-2 PubMed
Proc Natl Acad Sci U S A. 1990 Jan;87(1):167-9 PubMed
J Biomol Struct Dyn. 1985 Aug;3(1):67-83 PubMed
Nucleic Acids Res. 1990 Oct 25;18(20):6057-60 PubMed
J Mol Biol. 1991 May 20;219(2):145-9 PubMed
Hum Genet. 1992 Jun;89(4):389-94 PubMed
Biochemistry. 1992 Sep 1;31(34):8009-21 PubMed
Biochemistry. 1993 Sep 28;32(38):10263-70 PubMed