Conformational transitions of alternating purine-pyrimidine DNAs in perchlorate ethanol solutions
Language English Country United States Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
8580346
PubMed Central
PMC1236436
DOI
10.1016/s0006-3495(95)80073-1
PII: S0006-3495(95)80073-1
Knihovny.cz E-resources
- MeSH
- Biophysics MeSH
- Biophysical Phenomena MeSH
- Circular Dichroism MeSH
- Nucleic Acid Denaturation MeSH
- DNA chemistry MeSH
- Ethanol MeSH
- Nucleic Acid Conformation * MeSH
- Perchlorates MeSH
- Poly dA-dT chemistry MeSH
- Polydeoxyribonucleotides chemistry MeSH
- Solutions MeSH
- Base Sequence MeSH
- Sodium Compounds MeSH
- Spectrophotometry, Ultraviolet MeSH
- In Vitro Techniques MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- DNA MeSH
- Ethanol MeSH
- Perchlorates MeSH
- Poly dA-dT MeSH
- poly(d(G-T).d(C-A)) MeSH Browser
- Polydeoxyribonucleotides MeSH
- Solutions MeSH
- Sodium Compounds MeSH
- sodium perchlorate MeSH Browser
Conformational transitions of poly(dA-dC).poly(dG-dT), poly(dA-dT).poly(dA-dT), and other alternating purine-pyrimidine DNAs were studied in aqueous ethanol solutions containing molar concentrations of sodium perchlorate, which is a novel solvent stabilizing non-B duplexes of DNA. Using CD and UV absorption spectroscopies, we show that this solvent unstacks bases and unwinds the B-forms of the DNAs to transform them into the A-form or Z-form. In the absence of divalent cations poly(dA-dC).poly(dG-dT) can adopt both of these conformations. Its transition into the Z-form is induced at higher salt and lower ethanol concentrations, and at higher temperatures than the transition into the A-form. Submillimolar concentrations of NiCl2 induce a highly cooperative and slow A-Z transition or Z-Z' transition, which is fast and displays low cooperativity. Poly(dA-dT).poly(dA-dT) easily isomerizes into the A-form in perchlorate-ethanol solutions, whereas high perchlorate concentrations denature the polynucleotide, which then cannot adopt the Z-form. At low temperatures, however, NiCl2 also cooperatively induces the Z'-form in poly(dA-dT).poly(dA-dT). Poly(dI-dC).poly(dI-dC) is known to adopt an unusual B-form in low-salt aqueous solution, which is transformed into a standard B-form by the combination of perchlorate and ethanol. NiCl2 then transforms poly(dI-dC).poly(dI-dC) into the Z'-form, which is also adopted by poly(dI-br5dC).poly(dI-br5dC).
See more in PubMed
J Biomol Struct Dyn. 1987 Aug;5(1):97-104 PubMed
J Biomol Struct Dyn. 1993 Dec;11(3):655-69 PubMed
J Biomol Struct Dyn. 1989 Feb;6(4):715-27 PubMed
Hum Genet. 1990 Mar;84(4):301-36 PubMed
Nucleic Acids Res. 1990 Apr 25;18(8):2141-8 PubMed
Nucleic Acids Res. 1990 Jul 25;18(14):4067-73 PubMed
Nucleic Acids Res. 1991 Feb 11;19(3):631-6 PubMed
Nucleic Acids Res. 1991 May 11;19(9):2343-7 PubMed
Int J Biol Macromol. 1991 Dec;13(6):329-36 PubMed
J Biomol Struct Dyn. 1991 Aug;9(1):81-5 PubMed
Genomics. 1992 Feb;12(2):281-8 PubMed
Biochemistry. 1994 Apr 5;33(13):3801-6 PubMed
Science. 1994 Apr 15;264(5157):433-6 PubMed
J Biomol Struct Dyn. 1994 Jun;11(6):1225-36 PubMed
Genomics. 1994 Jul 1;22(1):226-30 PubMed
Oncogene. 1994 Dec;9(12):3695-700 PubMed
Proc Natl Acad Sci U S A. 1994 Dec 6;91(25):12155-8 PubMed
Oncogene. 1995 Mar 2;10(5):1019-22 PubMed
J Mol Biol. 1963 Apr;6:251-5 PubMed
Nature. 1970 Dec 19;228(5277):1166-9 PubMed
J Mol Biol. 1970 Dec 28;54(3):465-97 PubMed
J Mol Biol. 1972 Jun 28;67(3):375-96 PubMed
J Mol Biol. 1974 Aug 25;87(4):817-33 PubMed
Biopolymers. 1975 Mar;14(3):487-98 PubMed
Nature. 1976 Mar 25;260(5549):365-6 PubMed
Nature. 1977 Nov 24;270(5635):369-70 PubMed
Proc Natl Acad Sci U S A. 1979 Jun;76(6):2508-11 PubMed
Nature. 1980 Aug 7;286(5773):567-73 PubMed
Biochem Biophys Res Commun. 1980 Jul 16;95(1):156-62 PubMed
J Mol Biol. 1980 Oct 15;143(1):49-72 PubMed
Science. 1981 Jan 9;211(4478):171-6 PubMed
Proc Natl Acad Sci U S A. 1981 Mar;78(3):1619-23 PubMed
Biopolymers. 1981 Aug;20(8):1589-603 PubMed
J Mol Biol. 1981 Nov 15;152(4):723-36 PubMed
J Mol Biol. 1981 Sep 25;151(3):535-56 PubMed
Nucleic Acids Res. 1982 May 25;10(10):3261-77 PubMed
Nucleic Acids Res. 1982 Nov 11;10(21):6969-79 PubMed
J Mol Biol. 1983 May 5;166(1):85-92 PubMed
Biopolymers. 1984 Jul;23(7):1269-81 PubMed
Biopolymers. 1984 Nov;23(11 Pt 1):2127-39 PubMed
Biochemistry. 1985 Dec 3;24(25):7456-62 PubMed
Biopolymers. 1985 Dec;24(12):2185-94 PubMed
Biochemistry. 1986 Jan 14;25(1):41-50 PubMed
Nucleic Acids Res. 1986 Mar 25;14(6):2737-48 PubMed
Biochemistry. 1986 Jun 17;25(12):3659-65 PubMed
Biopolymers. 1986 Nov;25(11):2133-48 PubMed
J Mol Biol. 1986 Dec 5;192(3):633-43 PubMed
Biopolymers. 1987 Mar;26(3):329-32 PubMed
Nucleic Acids Res. 1987 Sep 25;15(18):7627-36 PubMed
Proc Natl Acad Sci U S A. 1990 Jan;87(1):167-9 PubMed
J Biomol Struct Dyn. 1985 Aug;3(1):67-83 PubMed
J Biomol Struct Dyn. 1983 Oct;1(1):21-57 PubMed
J Biomol Struct Dyn. 1987 Feb;4(4):535-52 PubMed
Nucleic Acids Res. 1992 Mar 11;20(5):1109-12 PubMed
Biopolymers. 1992 Mar;32(3):271-6 PubMed
Biopolymers. 1991 Nov;31(13):1471-81 PubMed
J Biomol Struct Dyn. 1991 Dec;9(3):571-8 PubMed
Biochemistry. 1993 Nov 9;32(44):11754-60 PubMed
Biophys J. 1993 Sep;65(3):1039-49 PubMed
Oncogene. 1994 Jan;9(1):29-32 PubMed
J Biomol Struct Dyn. 1988 Dec;6(3):503-10 PubMed
The guanine-rich fragile X chromosome repeats are reluctant to form tetraplexes
The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH
Conformational properties of DNA strands containing guanine-adenine and thymine-adenine repeats
Comparison of the solution and crystal conformations of (G + C)-rich fragments of DNA