The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH
Jazyk angličtina Země Anglie, Velká Británie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11713318
PubMed Central
PMC92515
DOI
10.1093/nar/29.22.4684
Knihovny.cz E-zdroje
- MeSH
- cirkulární dichroismus MeSH
- dimerizace MeSH
- DNA chemie MeSH
- elektroforéza v polyakrylamidovém gelu MeSH
- konformace nukleové kyseliny * MeSH
- lidé MeSH
- spektrofotometrie ultrafialová MeSH
- syndrom fragilního X genetika MeSH
- trinukleotidové repetice * MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- DNA MeSH
UV absorption and CD spectroscopy, along with polyacrylamide gel electrophoresis, were used to study conformational properties of DNA fragments containing the trinucleotide repeat (GCC)(n) (n = 4, 8 or 16), whose expansion is correlated with the fragile X chromosome syndrome. We have found that the conformational spectrum of the (GCC)(n) strand is wider than has been shown so far. (GCC)(n) strands adopt the hairpin described in the literature under a wide range of salt concentrations, but only at alkaline (>7.5) pH values. However, at neutral and slightly acid pH (GCC)(4) and (GCC)(8) strands homodimerize. Our data suggest that the homodimer is a bimolecular tetraplex formed by two parallel-oriented hairpins held together by hemi-protonated intermolecular C.C(+) pairs. The (GCC)(16) strand forms the same tetraplex intramolecularly. We further show that below pH 5 (GCC)(n) strands generate intercalated cytosine tetraplexes, whose molecularity depends on DNA strand length. They are tetramolecular with (GCC)(4), bimolecular with (GCC)(8) and monomolecular with (GCC)(16). i-Tetraplex formation is a complex and slow process. The neutral tetraplex, on the other hand, arises with fast kinetics under physiological conditions. Thus it is a conformational alternative of the (GCC)(n) strand duplex with a complementary (GGC)(n) strand.
Zobrazit více v PubMed
Ashley C.T.J. and Warren,S.T. (1995) Trinucleotide repeat expansion and human disease. Annu. Rev. Genet., 29, 703–728. PubMed
Oostra B.A. and Willems,P.J. (1995) A fragile gene. Bioessays, 17, 941–947. PubMed
Jin P. and Warren,S.T. (2000) Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet., 9, 901–908. PubMed
Mitas M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res., 25, 2245–2254. PubMed PMC
Darlow J.M. and Leach,D.R.F. (1998) Secondary structures in d(CGG) and d(CCG) repeat tracts. J. Mol. Biol., 275, 3–16. PubMed
Pearson C.E. and Sinden,R.R. (1998) Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol., 8, 321–330. PubMed
Wells R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem., 271, 2875–2878. PubMed
Gordenin D.A., Kunkel,T.A. and Resnick,M.A. (1997) Repeat expansion–all in a flap? Nature Genet., 16, 116–118. PubMed
Usdin K. and Grabczyk,E. (2000) DNA repeat expansions and human disease. Cell. Mol. Life Sci., 57, 914–931. PubMed PMC
Smith S.S., Laayoun,A., Lingeman,R.G., Baker,D.J. and Riley,J. (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J. Mol. Biol., 243, 143–151. PubMed
Chen X., Mariappan,S.V.S., Catasti,P., Ratliff,R., Moyzis,R.K., Laayoun,A., Smith,S.S., Bradbury,E.M. and Gupta,G. (1995) Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl Acad. Sci. USA, 92, 5199–5203. PubMed PMC
Zheng M., Huang,X., Smith,G.K., Yang,X. and Gao,X. (1996) Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J. Mol. Biol., 264, 323–336. PubMed
Mariappan S.V.S., Catasti,P., Chen,X., Ratliff,R., Moyzis,R.K., Bradbury,E.M. and Gupta,G. (1996) Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n.(GGC)n. Nucleic Acids Res., 24, 784–792. PubMed PMC
Mariappan S.V.S., Silks,L.A., Bradbury,E.M. and Gupta,G. (1998) Fragile X DNA triplet repeats, (GCC)n, form hairpins with single hydrogen-bonded cytosine.cytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective N4-labeled cytosine bases. J. Mol. Biol., 283, 111–120. PubMed
Yu A., Barron,M.D., Romero,R.M., Christz,M., Gold,B., Dai,J., Gray,D.M., Haworth,I.S. and Mitas,M. (1997) At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry, 36, 3687–3699. PubMed
Vorlícková M., Zimulová,M., Kovanda,J., Fojtík,P. and Kypr,J. (1998) Conformational properties of DNA dodecamers containing four tandem repeats of the CNG triplets. Nucleic Acids Res., 26, 2679–2685. PubMed PMC
Gao X., Huang,X., Smith,G.K., Zheng,M. and Liu,H. (1995) New antiparallel duplex motif of DNA CCG repeats that is stabilized by extrahelical bases symmetrically located in the minor groove. J. Am. Chem. Soc., 117, 8883–8884.
Gray D.M., Hung,S.-H. and Johnson,K.H. (1995) Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol., 246, 19–34. PubMed
Gray D.M., Hamilton,F.D. and Vaughan,M.R. (1978) The analysis of circular dichroism spectra of natural DNAs using spectral components from synthetic DNAs. Biopolymers, 17, 85–106. PubMed
Allen F.S., Gray,D.M., Roberts,G.P. and Tinoco,I.J. (1972) The ultraviolet circular dichroism of some natural DNAs and an analysis of the spectra for sequence information. Biopolymers, 11, 853–879. PubMed
Kypr J., Chládková,J., Zimulová,M. and Vorlícková,M. (1999) Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res., 27, 3466–3473. PubMed PMC
Vorlícková M. (1995) Conformational transitions of alternating purine-pyrimidine DNAs in perchlorate ethanol solutions. Biophys. J., 69, 2033–2043. PubMed PMC
Studdert D.S., Patroni,M. and Davis,R.C. (1972) Circular dichroism of DNA: temperature and salt dependence. Biopolymers, 11, 761–779. PubMed
Kypr J., tepán,J., Chládková,J. and Vorlícková,M. (1999) Circular dichroism spectroscopy analysis of conformational transitions of a 54 base pair DNA duplex composed of alternating CGCGCG and TATATA blocks. Biospectroscopy, 5, 253–262. PubMed
Xodo L.E., Manzini,G., Quadrifoglio,F., van der Marel,G.A. and van Boom,J.H. (1988) Oligodeoxynucleotide folding in solution: loop size and stability of B-hairpins. Biochemistry, 27, 6321–6326. PubMed
Xodo L.E., Manzini,G., Quadrifoglio,F., van der Marel,G. and van Boom,J.H. (1989) Hairpin structures in synthetic oligodeoxynucleotides: sequence effects on the duplex-to-hairpin transition. Biochimie, 71, 793–803. PubMed
Mitchell J.E., Newbury,S.F. and McClellan,J.A. (1995) Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to Fragile X and related human genetic diseases. Nucleic Acids Res., 23, 1876–1881. PubMed PMC
Kejnovská I., Tumová,M. and Vorlícková,M. (2001) (CGA)4: parallel, anti-parallel, right-handed and left-handed homoduplexes of a trinucleotide repeat DNA. Biochim. Biophys. Acta, 1527, 73–80. PubMed
Rodbard D. and Chrambach,A. (1971) Estimation of molecular radius, free mobility and valence using polyacrylamide gel electrophoresis. Anal. Biochem., 40, 95–134. PubMed
Manzini G., Xodo,L.E., Gasparotto,D., Quadrifoglio,F., van der Marel,G.A. and van Boom,J.H. (1990) Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J. Mol. Biol., 213, 833–843. PubMed
Bullock B.P. and Habener,J.F. (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation and increases net charge. Biochemistry, 3, 3795–3809. PubMed
Antao V.P. and Gray,D.M. (1993) CD spectral comparison of the acid-induced structures of poly[d(A)], poly[r(A)], poly[d(C)] and poly[r(C)]. J. Biomol. Struct. Dyn., 10, 819–839. PubMed
Manzini G., Yathindra,N. and Xodo,L.E. (1994) Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res., 22, 4634–4640. PubMed PMC
Kanehara H., Mizuguchi,M., Tajima,K., Kanaori,K. and Makino,K. (1997) Spectroscopic evidence for the formation of four-stranded solution structure of oligodeoxycytidine phosphorothioate. Biochemistry, 36, 1790–1797. PubMed
Simonsson T., Pribylová,M. and Vorlícková,M. (2000) A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun., 278, 158–166. PubMed
Robinson H., van der Marel,G.A., van Boom,J.H. and Wang,A.H.-J. (1992) Unusual DNA conformation at low pH revealed by NMR: parallel-stranded DNA duplex with homo base pairs. Biochemistry, 31, 10510–10517. PubMed
Robinson H. and Wang,A.H.-J. (1993) 5′-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. Natl Acad. Sci. USA, 90, 5224–5228. PubMed PMC
Vorlícková M., Kejnovská,I., Tumová,M. and Kypr,J. (2001) Conformational properties of DNA fragments containing (GAC) trinucleotide repeats associated with skeletal displasias. Eur. Biophy. J., 30, 179–185. PubMed
Comolli L.R., Pelton,J.G. and Tinoco,I.,Jr (1998) Mapping of a protein-RNA kissing hairpin interface: Rom and Tar-Tar*. Nucleic Acids Res., 26, 4688–4695. PubMed PMC
Gehring K., Leroy,J.L. and Gueron,M. (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature, 363, 561–565. PubMed
Leroy J.L., Gehring,K., Kettani,A. and Guéron,M. (1993) Acid multimers of oligodeoxycytidine strands: stoichiometry, base-pair characterization and proton exchange properties. Biochemistry, 32, 6019–6031. PubMed
Leroy J.-L., Guéron,M., Mergny,J.-L. and Hélene,C. (1994) Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res., 22, 1600–1606. PubMed PMC
van de Sande J.H., Ramsing,N.B., Germann,M.W., Elhorst,W., Kalisch,B.W., Kitzing,E., Pon,R.T., Clegg,R.C. and Jovin,T.M. (1988) Parallel stranded DNA. Science, 241, 551–557. PubMed
Kanaori K., Maeda,A., Kanehara,H., Tajima,K. and Makino,K. (1998) 1H nuclear magnetic resonance study on equilibrium between two four-stranded solution conformations of short d(CnT). Biochemistry, 37, 12979–12986. PubMed
McMurray C.T. (1995) Mechanisms of DNA expansion. Chromosoma, 104, 2–13. PubMed
McMurray C.T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl Acad. Sci. USA, 96, 1823–1825. PubMed PMC
Moore H., Greenwell,P.W., Liu,C.P., Arnheim,N. and Petes,T.D. (1999) Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA, 96, 1504–1509. PubMed PMC