The fragile X chromosome (GCC) repeat folds into a DNA tetraplex at neutral pH

. 2001 Nov 15 ; 29 (22) : 4684-90.

Jazyk angličtina Země Anglie, Velká Británie Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid11713318

UV absorption and CD spectroscopy, along with polyacrylamide gel electrophoresis, were used to study conformational properties of DNA fragments containing the trinucleotide repeat (GCC)(n) (n = 4, 8 or 16), whose expansion is correlated with the fragile X chromosome syndrome. We have found that the conformational spectrum of the (GCC)(n) strand is wider than has been shown so far. (GCC)(n) strands adopt the hairpin described in the literature under a wide range of salt concentrations, but only at alkaline (>7.5) pH values. However, at neutral and slightly acid pH (GCC)(4) and (GCC)(8) strands homodimerize. Our data suggest that the homodimer is a bimolecular tetraplex formed by two parallel-oriented hairpins held together by hemi-protonated intermolecular C.C(+) pairs. The (GCC)(16) strand forms the same tetraplex intramolecularly. We further show that below pH 5 (GCC)(n) strands generate intercalated cytosine tetraplexes, whose molecularity depends on DNA strand length. They are tetramolecular with (GCC)(4), bimolecular with (GCC)(8) and monomolecular with (GCC)(16). i-Tetraplex formation is a complex and slow process. The neutral tetraplex, on the other hand, arises with fast kinetics under physiological conditions. Thus it is a conformational alternative of the (GCC)(n) strand duplex with a complementary (GGC)(n) strand.

Zobrazit více v PubMed

Ashley C.T.J. and Warren,S.T. (1995) Trinucleotide repeat expansion and human disease. Annu. Rev. Genet., 29, 703–728. PubMed

Oostra B.A. and Willems,P.J. (1995) A fragile gene. Bioessays, 17, 941–947. PubMed

Jin P. and Warren,S.T. (2000) Understanding the molecular basis of fragile X syndrome. Hum. Mol. Genet., 9, 901–908. PubMed

Mitas M. (1997) Trinucleotide repeats associated with human disease. Nucleic Acids Res., 25, 2245–2254. PubMed PMC

Darlow J.M. and Leach,D.R.F. (1998) Secondary structures in d(CGG) and d(CCG) repeat tracts. J. Mol. Biol., 275, 3–16. PubMed

Pearson C.E. and Sinden,R.R. (1998) Trinucleotide repeat DNA structures: dynamic mutations from dynamic DNA. Curr. Opin. Struct. Biol., 8, 321–330. PubMed

Wells R.D. (1996) Molecular basis of genetic instability of triplet repeats. J. Biol. Chem., 271, 2875–2878. PubMed

Gordenin D.A., Kunkel,T.A. and Resnick,M.A. (1997) Repeat expansion–all in a flap? Nature Genet., 16, 116–118. PubMed

Usdin K. and Grabczyk,E. (2000) DNA repeat expansions and human disease. Cell. Mol. Life Sci., 57, 914–931. PubMed PMC

Smith S.S., Laayoun,A., Lingeman,R.G., Baker,D.J. and Riley,J. (1994) Hypermethylation of telomere-like foldbacks at codon 12 of the human c-ha-ras gene and the trinucleotide repeat of the FMR-1 gene of fragile X. J. Mol. Biol., 243, 143–151. PubMed

Chen X., Mariappan,S.V.S., Catasti,P., Ratliff,R., Moyzis,R.K., Laayoun,A., Smith,S.S., Bradbury,E.M. and Gupta,G. (1995) Hairpins are formed by the single DNA strands of the fragile X triplet repeats: structure and biological implications. Proc. Natl Acad. Sci. USA, 92, 5199–5203. PubMed PMC

Zheng M., Huang,X., Smith,G.K., Yang,X. and Gao,X. (1996) Genetically unstable CXG repeats are structurally dynamic and have a high propensity for folding. An NMR and UV spectroscopic study. J. Mol. Biol., 264, 323–336. PubMed

Mariappan S.V.S., Catasti,P., Chen,X., Ratliff,R., Moyzis,R.K., Bradbury,E.M. and Gupta,G. (1996) Solution structures of the individual single strands of the fragile X DNA triplets (GCC)n.(GGC)n. Nucleic Acids Res., 24, 784–792. PubMed PMC

Mariappan S.V.S., Silks,L.A., Bradbury,E.M. and Gupta,G. (1998) Fragile X DNA triplet repeats, (GCC)n, form hairpins with single hydrogen-bonded cytosine.cytosine mispairs at the CpG sites: isotope-edited nuclear magnetic resonance spectroscopy on (GCC)n with selective N4-labeled cytosine bases. J. Mol. Biol., 283, 111–120. PubMed

Yu A., Barron,M.D., Romero,R.M., Christz,M., Gold,B., Dai,J., Gray,D.M., Haworth,I.S. and Mitas,M. (1997) At physiological pH, d(CCG)15 forms a hairpin containing protonated cytosines and a distorted helix. Biochemistry, 36, 3687–3699. PubMed

Vorlícková M., Zimulová,M., Kovanda,J., Fojtík,P. and Kypr,J. (1998) Conformational properties of DNA dodecamers containing four tandem repeats of the CNG triplets. Nucleic Acids Res., 26, 2679–2685. PubMed PMC

Gao X., Huang,X., Smith,G.K., Zheng,M. and Liu,H. (1995) New antiparallel duplex motif of DNA CCG repeats that is stabilized by extrahelical bases symmetrically located in the minor groove. J. Am. Chem. Soc., 117, 8883–8884.

Gray D.M., Hung,S.-H. and Johnson,K.H. (1995) Absorption and circular dichroism spectroscopy of nucleic acid duplexes and triplexes. Methods Enzymol., 246, 19–34. PubMed

Gray D.M., Hamilton,F.D. and Vaughan,M.R. (1978) The analysis of circular dichroism spectra of natural DNAs using spectral components from synthetic DNAs. Biopolymers, 17, 85–106. PubMed

Allen F.S., Gray,D.M., Roberts,G.P. and Tinoco,I.J. (1972) The ultraviolet circular dichroism of some natural DNAs and an analysis of the spectra for sequence information. Biopolymers, 11, 853–879. PubMed

Kypr J., Chládková,J., Zimulová,M. and Vorlícková,M. (1999) Aqueous trifluorethanol solutions simulate the environment of DNA in the crystalline state. Nucleic Acids Res., 27, 3466–3473. PubMed PMC

Vorlícková M. (1995) Conformational transitions of alternating purine-pyrimidine DNAs in perchlorate ethanol solutions. Biophys. J., 69, 2033–2043. PubMed PMC

Studdert D.S., Patroni,M. and Davis,R.C. (1972) Circular dichroism of DNA: temperature and salt dependence. Biopolymers, 11, 761–779. PubMed

Kypr J., tepán,J., Chládková,J. and Vorlícková,M. (1999) Circular dichroism spectroscopy analysis of conformational transitions of a 54 base pair DNA duplex composed of alternating CGCGCG and TATATA blocks. Biospectroscopy, 5, 253–262. PubMed

Xodo L.E., Manzini,G., Quadrifoglio,F., van der Marel,G.A. and van Boom,J.H. (1988) Oligodeoxynucleotide folding in solution: loop size and stability of B-hairpins. Biochemistry, 27, 6321–6326. PubMed

Xodo L.E., Manzini,G., Quadrifoglio,F., van der Marel,G. and van Boom,J.H. (1989) Hairpin structures in synthetic oligodeoxynucleotides: sequence effects on the duplex-to-hairpin transition. Biochimie, 71, 793–803. PubMed

Mitchell J.E., Newbury,S.F. and McClellan,J.A. (1995) Compact structures of d(CNG)n oligonucleotides in solution and their possible relevance to Fragile X and related human genetic diseases. Nucleic Acids Res., 23, 1876–1881. PubMed PMC

Kejnovská I., Tumová,M. and Vorlícková,M. (2001) (CGA)4: parallel, anti-parallel, right-handed and left-handed homoduplexes of a trinucleotide repeat DNA. Biochim. Biophys. Acta, 1527, 73–80. PubMed

Rodbard D. and Chrambach,A. (1971) Estimation of molecular radius, free mobility and valence using polyacrylamide gel electrophoresis. Anal. Biochem., 40, 95–134. PubMed

Manzini G., Xodo,L.E., Gasparotto,D., Quadrifoglio,F., van der Marel,G.A. and van Boom,J.H. (1990) Triple helix formation by oligopurine-oligopyrimidine DNA fragments. Electrophoretic and thermodynamic behavior. J. Mol. Biol., 213, 833–843. PubMed

Bullock B.P. and Habener,J.F. (1998) Phosphorylation of the cAMP response element binding protein CREB by cAMP-dependent protein kinase A and glycogen synthase kinase-3 alters DNA-binding affinity, conformation and increases net charge. Biochemistry, 3, 3795–3809. PubMed

Antao V.P. and Gray,D.M. (1993) CD spectral comparison of the acid-induced structures of poly[d(A)], poly[r(A)], poly[d(C)] and poly[r(C)]. J. Biomol. Struct. Dyn., 10, 819–839. PubMed

Manzini G., Yathindra,N. and Xodo,L.E. (1994) Evidence for intramolecularly folded i-DNA structures in biologically relevant CCC-repeat sequences. Nucleic Acids Res., 22, 4634–4640. PubMed PMC

Kanehara H., Mizuguchi,M., Tajima,K., Kanaori,K. and Makino,K. (1997) Spectroscopic evidence for the formation of four-stranded solution structure of oligodeoxycytidine phosphorothioate. Biochemistry, 36, 1790–1797. PubMed

Simonsson T., Pribylová,M. and Vorlícková,M. (2000) A nuclease hypersensitive element in the human c-myc promoter adopts several distinct i-tetraplex structures. Biochem. Biophys. Res. Commun., 278, 158–166. PubMed

Robinson H., van der Marel,G.A., van Boom,J.H. and Wang,A.H.-J. (1992) Unusual DNA conformation at low pH revealed by NMR: parallel-stranded DNA duplex with homo base pairs. Biochemistry, 31, 10510–10517. PubMed

Robinson H. and Wang,A.H.-J. (1993) 5′-CGA sequence is a strong motif for homo base-paired parallel-stranded DNA duplex as revealed by NMR analysis. Proc. Natl Acad. Sci. USA, 90, 5224–5228. PubMed PMC

Vorlícková M., Kejnovská,I., Tumová,M. and Kypr,J. (2001) Conformational properties of DNA fragments containing (GAC) trinucleotide repeats associated with skeletal displasias. Eur. Biophy. J., 30, 179–185. PubMed

Comolli L.R., Pelton,J.G. and Tinoco,I.,Jr (1998) Mapping of a protein-RNA kissing hairpin interface: Rom and Tar-Tar*. Nucleic Acids Res., 26, 4688–4695. PubMed PMC

Gehring K., Leroy,J.L. and Gueron,M. (1993) A tetrameric DNA structure with protonated cytosine.cytosine base pairs. Nature, 363, 561–565. PubMed

Leroy J.L., Gehring,K., Kettani,A. and Guéron,M. (1993) Acid multimers of oligodeoxycytidine strands: stoichiometry, base-pair characterization and proton exchange properties. Biochemistry, 32, 6019–6031. PubMed

Leroy J.-L., Guéron,M., Mergny,J.-L. and Hélene,C. (1994) Intramolecular folding of a fragment of the cytosine-rich strand of telomeric DNA into an i-motif. Nucleic Acids Res., 22, 1600–1606. PubMed PMC

van de Sande J.H., Ramsing,N.B., Germann,M.W., Elhorst,W., Kalisch,B.W., Kitzing,E., Pon,R.T., Clegg,R.C. and Jovin,T.M. (1988) Parallel stranded DNA. Science, 241, 551–557. PubMed

Kanaori K., Maeda,A., Kanehara,H., Tajima,K. and Makino,K. (1998) 1H nuclear magnetic resonance study on equilibrium between two four-stranded solution conformations of short d(CnT). Biochemistry, 37, 12979–12986. PubMed

McMurray C.T. (1995) Mechanisms of DNA expansion. Chromosoma, 104, 2–13. PubMed

McMurray C.T. (1999) DNA secondary structure: a common and causative factor for expansion in human disease. Proc. Natl Acad. Sci. USA, 96, 1823–1825. PubMed PMC

Moore H., Greenwell,P.W., Liu,C.P., Arnheim,N. and Petes,T.D. (1999) Triplet repeats form secondary structures that escape DNA repair in yeast. Proc. Natl Acad. Sci. USA, 96, 1504–1509. PubMed PMC

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...