Video rate confocal laser scanning reflection microscopy in the investigation of normal and neoplastic living cell dynamics
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
9601540
Knihovny.cz E-zdroje
- MeSH
- buněčná membrána fyziologie ultrastruktura MeSH
- buněčné linie MeSH
- cytoplazma fyziologie ultrastruktura MeSH
- experimentální sarkom ultrastruktura MeSH
- fixace tkání MeSH
- histocytologické preparační techniky MeSH
- kompartmentace buňky MeSH
- konfokální mikroskopie * MeSH
- kosti a kostní tkáň cytologie MeSH
- krysa rodu Rattus MeSH
- nádorové buňky kultivované MeSH
- organely fyziologie ultrastruktura MeSH
- videomikroskopie * MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
The introduction of video rate confocal laser scanning microscopes (VRCLSM) used in reflection mode with high magnification, high aperture objective lenses and with further magnification by a zoom facility allowed the first detailed observations of the activity of living cytoplasm and offered a new tool for investigation of the structural transition from the living state to the specimen fixed for electron microscopy (EM). We used a Noran Odyssey VRCLSM in reflection (backscattered) mode. A greater degree of oversampling and more comfortable viewing of the liver or taped video image was achieved at zoom factor 5, giving a display monitor field width of 10 microns. A series of mesenchyme derived cell lines--from normal cells to sarcoma cells of different malignancy--was used to compare behaviour of the observed intracellular structures and results of fixation. We contrasted the dynamic behaviour of fine features in the cytoplasm of normal and neoplastic living cells and changes induced by various treatments. The tubulomembraneous 3D structure of cytoplasm in living cells is dynamic with motion observable at the new limits of resolution provided by VRCLSM. All organelles appear integrated into one functional compartment supporting the continuous 3D trafficking of small particles (vesicles). This integrated dynamic spatial network (IDSN) was found to be largest in neoplastic cells.