Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
10049868
PubMed Central
PMC91149
DOI
10.1128/aem.65.3.1092-1098.1999
Knihovny.cz E-zdroje
- MeSH
- Escherichia coli chemie genetika metabolismus MeSH
- genetické inženýrství MeSH
- kadmium metabolismus MeSH
- kationty dvojmocné metabolismus MeSH
- měď metabolismus MeSH
- molekulární sekvence - údaje MeSH
- peptidy chemie metabolismus MeSH
- poriny MeSH
- proteiny vnější bakteriální membrány MeSH
- sekvence aminokyselin MeSH
- těžké kovy metabolismus MeSH
- virové receptory chemie genetika metabolismus MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- kadmium MeSH
- kationty dvojmocné MeSH
- maltoporins MeSH Prohlížeč
- měď MeSH
- peptidy MeSH
- poriny MeSH
- proteiny vnější bakteriální membrány MeSH
- těžké kovy MeSH
- virové receptory MeSH
- zinek MeSH
Metal binding peptides of sequences Gly-His-His-Pro-His-Gly (named HP) and Gly-Cys-Gly-Cys-Pro-Cys-Gly-Cys-Gly (named CP) were genetically engineered into LamB protein and expressed in Escherichia coli. The Cd2+-to-HP and Cd2+-to-CP stoichiometries of peptides were 1:1 and 3:1, respectively. Hybrid LamB proteins were found to be properly folded in the outer membrane of E. coli. Isolated cell envelopes of E. coli bearing newly added metal binding peptides showed an up to 1.8-fold increase in Cd2+ binding capacity. The bioaccumulation of Cd2+, Cu2+, and Zn2+ by E. coli was evaluated. Surface display of CP multiplied the ability of E. coli to bind Cd2+ from growth medium fourfold. Display of HP peptide did not contribute to an increase in the accumulation of Cu2+ and Zn2+. However, Cu2+ ceased contribution of HP for Cd2+ accumulation, probably due to the strong binding of Cu2+ to HP. Thus, considering the cooperation of cell structures with inserted peptides, the relative affinities of metal binding peptide and, for example, the cell wall to metal ion should be taken into account in the rational design of peptide sequences possessing specificity for a particular metal.
Zobrazit více v PubMed
Bertini I, Briganti F, Scozzafava A. Specific factors in metal ion-macromolecular ligand interactions. In: Berthon G, editor. Handbook of metal-ligand interactions in biological fluids. Vol. 1. New York, N.Y: Marcel Dekker; 1995. pp. 81–92.
Beveridge T J, Koval S F. Binding of metals to cell envelopes of Escherichia coli K-12. Appl Environ Microbiol. 1981;42:325–335. PubMed PMC
Beveridge T J, Murray R G E. Uptake and retention of metals by cell walls of Bacillus subtilis. J Bacteriol. 1976;127:1502–1518. PubMed PMC
Bianchi E, Folgory A, Wallace A, Nicotra M, Acali S, Phalipon A, Barbato G, Bazzo R, Cortese R, Felici F, Pessi A. A conformationally homogeneous combinatorial peptide library. J Mol Biol. 1995;247:154–160. PubMed
Boulain J, Charbit A, Hofnung M. Mutagenesis by random linker insertion into lamB gene of Escherichia coli K12. Mol Gen Genet. 1986;205:339–348. PubMed
Braun-Brenton C, Hofnung M. In vivo and in vitro functional alterations of the bacteriophage lambda receptor in lamB missense mutants of Escherichia coli K-12. J Bacteriol. 1986;148:845–852. PubMed PMC
Brown S. Metal-recognition by repeating polypeptides. Nat Biotechnol. 1997;15:269–272. PubMed
Brown S. Engineered iron oxide-adhesion mutants of Escherichia coli phage lambda receptor. Proc Natl Acad Sci USA. 1992;89:8651–8655. PubMed PMC
Cebolla Á, Guzmán C, de Lorenzo V. Nondisruptive detection of catabolic promoters of Pseudomonas putida with an antigenic surface reporter system. Appl Environ Microbiol. 1996;62:214–220. PubMed PMC
Chaney R L, Malik M, Li Y L, Brown S L, Brewer E P, Angle J S, Baker A J M. Phytoremediation of soil metals. Curr Opin Biotechnol. 1997;8:279–284. PubMed
Charbit A, Boulain J C, Ryter A, Hofnung M. Probing the topology of a bacterial membrane protein by genetic insertion of a foreign epitope: expression at the cell surface. EMBO J. 1996;5:3029–3037. PubMed PMC
Charbit A, Hofnung M. Isolation of different bacteriophages using the LamB protein for adsorption on Escherichia coli K-12. J Virol. 1985;53:667–671. PubMed PMC
Charbit A, Molla A, Saurin W, Hofnung M. Versatility of a vector for expression foreign polypeptides at the surface of Gram-negative bacteria. Gene. 1988;70:181–189. PubMed
de Vries G E, Raymond C K, Ludwig R A. Extension of bacteriophage λ host range: selection, cloning, and characterization of a constitutive λ receptor gene. Proc Natl Acad Sci USA. 1984;81:6080–6084. PubMed PMC
Diels L, Van Roy S, Mergeay M, Doyen W, Taghavi S, Leysen R. Immobilization of bacteria in composite membranes and development of tubular membrane reactors for heavy metal recuperation. In: Peterson R, editor. Effective membrane processes: new perspectives. Dordrecht, The Netherlands: Kluwer Academic Publishers; 1993. pp. 275–293.
Ferris F G, Beveridge T J. Site specifity of metallic ion binding in Escherichia coli K-12 lipopolysacharide. Can J Microbiol. 1985;32:52–55. PubMed
Gadd G M. Microbial control of heavy metal pollution. In: Fry J C, Gadd G M, Herbert R A, Jones C W, Watson-Craik I A, editors. Microbial control of pollution. Cambridge, United Kingdom: Cambridge University Press; 1992. pp. 59–87.
Gelmi M, Apostoli P, Cabibbo E, Porru S, Alassio L, Turano A. Resistance to cadmium salts and metal absorption by different microbial species. Curr Microbiol. 1994;29:335–341.
Georgiou G, Poetschke H L, Stathopoulos C, Francisco J A. Practical applications of engineering Gram-negative bacterial cell surfaces. Trends Biotechnol. 1993;11:6–10. PubMed
Haymore B L, Bild G S, Salsgiver W J, Staten N R, Krivi G G. Introducing strong metal-binding sites onto surfaces of proteins for facile and efficient metal-affinity purification. Methods (Companion Methods Enzymol) 1992;4:25–40.
Hitchcock P J, Brown T M. Morphological heterogeneity among Salmonella lipopolysacharide chemotypes in silver-stained polyacrylamide gels. J Bacteriol. 1983;154:269–277. PubMed PMC
Hofnung M. Expression of foreign polypeptides at the Escherichia coli cell surface. Methods Cell Biol. 1991;4:77–105. PubMed
Hoyle B D, Beveridge T J. Metal binding by the peptidoglycan sacculus of Escherichia coli K-12. Can J Microbiol. 1984;30:204–211. PubMed
Hoyle B D, Beveridge T J. Binding of metallic ions to the outer membrane of Escherichia coli. Appl Environ Microbiol. 1983;46:749–752. PubMed PMC
Huang C P, Westman D, Quirk K, Huang J P. The removal of cadmium (II) from dilute aqueous solutions by fungal absorbent. Water Sci Technol. 1988;20:369–376.
Huber A L, Holbein B E, Kidby D K. Metal uptake by synthetic and biosynthetic chemicals. In: Volesky B, editor. Biosorption of heavy metals. Boca Raton, Fla: CRC Press; 1990. pp. 249–291.
Hutchens T W, Yip T-T. Synthetic metal-binding protein surface domains for metal ion-dependent interaction chromatography. J Chromatogr. 1992;604:133–141. PubMed
Koide T, Foster D, Uoshitake S, Davie E W. Amino acid sequence of human histidine-rich glycoprotein derived from the nucleotide sequence of its cDNA. Biochemistry. 1986;25:2220–2225. PubMed
Kotrba P, Dolečková L, Pavlík M, Ruml T. Rapid screening of peptides for heavy metal binding. Biotechnol Technol. 1996;10:773–778.
Macaskie L E, Dean A C R. Metal sequestering biochemicals. In: Volesky B, editor. Biosorption of heavy metals. Boca Raton, Fla: CRC Press; 1990. pp. 200–248.
Macaskie L E, Dean A C R, Cheetham A K, Jakeman R J B, Skarnulis A J. Cadmium accumulation by Citrobacter sp.: the chemical nature of the accumulated metal precipitate and its location on the bacterial cells. J Gen Microbiol. 1987;133:539–544.
Marvin H J P, Ter Beest M B A, Wittholt B. Release of outer membrane fragments from wild-type Escherichia coli and from several E. coli lipopolysacharide mutants by EDTA and heat shock treatments. J Bacteriol. 1989;171:5262–5267. PubMed PMC
Morein S, Henricson D, Rifors L. Separation of inner and outer membrane vesicles from Escherichia coli in self-generating Percoll gradients. Anal Biochem. 1994;216:47–51. PubMed
Morgan W T. The histidine-rich glycoprotein of serum has a domain rich in histidine, proline, and glycine that binds heme and metals. Biochemistry. 1984;24:1496–1501. PubMed
Nriagu J O, Pacyna J M. Quantitative assesment of worldwide contamination of air, water and soils by trace metals. Nature. 1989;333:134–139. PubMed
Randall L L. Quantitation of the loss of the bacteriophage lambda receptor protein from the outer membrane of lipopolysacharide-deficient strains of Escherichia coli. J Bacteriol. 1975;123:41–46. PubMed PMC
Riddles P W, Blakeley R L, Zerner B. Reassessment of Ellman’s reagent. Methods Enzymol. 1983;91:49–60. PubMed
Sambrook J, Fritsch E F, Maniatis T. Molecular cloning: a laboratory manual. 2nd ed. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 1989.
Schreuder M P, Mooren A T A, Toschka H Y, Verrips C T, Klis F M. Immobilizing proteins on the surface of yeast cells. Trends Biotechnol. 1996;14:115–120. PubMed
Silhavy T J, Berman M L, Enquist L W. Experiments with gene fusion. Cold Spring Harbor, N.Y: Cold Spring Harbor Laboratory Press; 1984.
Sousa C, Cebola A, de Lorenzo V. Enhanced metallosorption of bacterial cells displaying poly-His peptides. Nat Biotechnol. 1996;14:1017–1020. PubMed
Sousa C, Kotrba P, Ruml T, Cebola A, de Lorenzo V. Metallosorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J Bacteriol. 1998;180:2280–2284. PubMed PMC
Steidler L, Remaut E, Fiers W. LamB as a carrier molecule for the functional exposition of IgG-binding domains of the Staphylococcus aureus protein A at the surface of Escherichia coli K12. Mol Gen Genet. 1993;236:187–192. PubMed
Su G T, Brahmbhatt H, Wehland J, Rohde M, Timmis K N. Construction of stable LamB-Shiga toxin B subunit hybrids: analysis of the expression in Salmonella typhymurium aroA strains and stimulation of B subunit-specific mucosal and serum antibody responses. Infect Immun. 1992;60:3345–3359. PubMed PMC
Szmelcman S, Hofnung M. Maltose transport in Escherichia coli K-12: involvement of the bacteriophage lambda receptor. J Bacteriol. 1975;124:112–118. PubMed PMC
Volesky B, Holan Z S. Biosorption of heavy metals. Biotechnol Prog. 1995;11:235–250. PubMed
Watanabe M E. Phytoremediation on the brink of commercialization. Environ Sci Technol. 1997;31:182–186. PubMed
Yamamura T, Watanabe T. Conformation analyses of (Cys-Pro-Leu-Cys)Hg, [(Cys-Pro-Leu-Cys)(tBuS)Hg]- and [(Cys-Pro-Leu-Cys)Zn(OMe)2]: the model peptides for cysteine-containing metal binding sites of metallo enzymes. In: Yanaihara N, editor. Peptide chemistry. Leiden, The Netherlands: ESCOM; 1993. pp. 281–283.
Yamamura T, Sasaki T, Ueki M. Synthesis of the zinc complex of Boc-Glu-Thr-Ile-His-OMe: the model peptides for the metal binding sites of ribonucleotide reductase. In: Yanaihara N, editor. Peptide chemistry. Leiden, The Netherlands: ESCOM; 1993. pp. 284–286.