Surface display of metal fixation motifs of bacterial P1-type ATPases specifically promotes biosorption of Pb(2+) by Saccharomyces cerevisiae
Jazyk angličtina Země Spojené státy americké Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
20173062
PubMed Central
PMC2849214
DOI
10.1128/aem.01463-09
PII: AEM.01463-09
Knihovny.cz E-zdroje
- MeSH
- adenosintrifosfatasy genetika metabolismus MeSH
- aglutininy genetika metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- kadmium metabolismus MeSH
- membránové transportní proteiny genetika metabolismus MeSH
- olovo metabolismus MeSH
- rekombinantní fúzní proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae - proteiny genetika metabolismus MeSH
- Saccharomyces cerevisiae enzymologie metabolismus MeSH
- vazba proteinů MeSH
- zinek metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- adenosintrifosfatasy MeSH
- aglutininy MeSH
- bakteriální proteiny MeSH
- kadmium MeSH
- membránové transportní proteiny MeSH
- olovo MeSH
- rekombinantní fúzní proteiny MeSH
- Saccharomyces cerevisiae - proteiny MeSH
- zinek MeSH
Biosorption of metal ions may take place by different passive metal-sequestering processes such as ion exchange, complexation, physical entrapment, and inorganic microprecipitation or by a combination of these. To improve the biosorption capacity of the potential yeast biosorbent, short metal-binding NP peptides (harboring the CXXEE metal fixation motif of the bacterial Pb(2+)-transporting P1-type ATPases) were efficiently displayed and covalently anchored to the cell wall of Saccharomyces cerevisiae. These were fusions to the carboxyl-terminal part of the sexual adhesion glycoprotein alpha-agglutinin (AGalpha1Cp). Compared to yeast cells displaying the anchoring domain only, those having a surface display of NP peptides multiplied their Pb(2+) biosorption capacity from solutions containing a 75 to 300 microM concentration of the metal ion up to 5-fold. The S-type Pb(2+) biosorption isotherms, plus the presence of electron-dense deposits (with an average size of 80 by 240 nm, observed by transmission electron microscopy) strongly suggested that the improved biosorption potential of NP-displaying cells is due to the onset of microprecipitation of Pb species on the modified cell wall. The power of an improved capacity for Pb biosorption was also retained by the isolated cell walls containing NP peptides. Their Pb(2+) biosorption property was insensitive to the presence of a 3-fold molar excess of either Cd(2+) or Zn(2+). These results suggest that the biosorption mechanism can be specifically upgraded with microprecipitation by the engineering of the biosorbent with an eligible metal-binding peptide.
Zobrazit více v PubMed
Alvarez-Puebla, R. A., J. J. Garrido, C. Valenzuela-Calahorro, and P. J. G. Goulet. 2005. Retention and induced aggregation of Co(II) on a humic substance: sorption isotherms, infrared absorption, and molecular modeling. Surf. Sci. 575:136-146.
Avery, S. V., and J. M. Tobin. 1993. Mechanism of adsorption of hard and soft metal ions to Saccharomyces cerevisiae and influence of hard and soft anions. Appl. Environ. Microbiol. 59:2851-2856. PubMed PMC
Borremans, B., J. L. Hobman, A. Provoost, N. L. Brown, and D. van der Lelie. 2001. Cloning and functional analysis of the pbr lead resistance determinant of Ralstonia metallidurans CH34. J. Bacteriol. 183:551-568. PubMed PMC
Chaney, R. L., J. S. Angle, C. L. Broadhurst, C. A. Peters, R. V. Tappero, and D. L. Sparks. 2007. Improved understanding of hyperaccumulation yields commercial phytoextraction and phytomining technologies. J. Environ. Qual. 36:1429-1443. PubMed
Chen, C., and J. Wang. 2007. Influence of metal ionic characteristics on the biosorption capacity by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 74:911-917. PubMed
Combet, C., C. Blanchet, C. Geourjon, and G. Deléage. 2000. Network protein sequence analysis. Trends Biotechnol. 25:147-150. PubMed
Diels, L., M. De Smet, L. Hooyberghs, and P. Corbisier. 1999. Heavy metals bioremediation of soil. Mol. Biotechnol. 12:149-158. PubMed
Gadd, G. M. 1992. Metals and microorganisms: a problem of definition. FEMS Microbiol. Lett. 79:197-203. PubMed
Ghaemmaghami, S., W. K. Huh, K. Bower, R. W. Howson, A. Belle, N. Dephoure, E. K. O'Shea, and J. S. Weissmen. 2003. Global analysis of protein expression in yeast. Nature 425:737-741. PubMed
Gietz, R. D., R. H. Schiestl, A. R. Willems, and R. A. Woods. 1995. Studies on the transformation of intact yeast cells by the LiAc/SS-DNA/PEG procedure. Yeast 15:355-360. PubMed
Hinz, C. 2001. Description of sorption data with isotherm equations. Geoderma 99:225-243.
Kotrba, P., L. Dolečková, V. de Lorenzo, and T. Ruml. 1999. Enhanced bioaccumulation of heavy metal ions by bacterial cells due to surface display of short metal binding peptides. Appl. Environ. Microbiol. 65:1092-1098. PubMed PMC
Kuroda, K., K. Matsui, S. Higuchi, A. Kotaka, H. Sahara, Y. Hata, and M. Ueda. 2009. Enhancement of display efficiency in yeast display system by vector engineering and gene disruption. Appl. Microbiol. Biotechnol. 82:713-719. PubMed
Kuroda, K., and M. Ueda. 2003. Bioadsorption of cadmium ion by cell surface-engineered yeasts displaying metallothionein and hexa-His. Appl. Microbiol. Biotechnol. 63:182-186. PubMed
Kuroda, K., and M. Ueda. 2006. Effective display of metallothionein tandem repeats on the bioadsorption of cadmium ion. Appl. Microbiol. Biotechnol. 70:458-463. PubMed
Kuroda, K., S. Shibasaki, M. Ueda, and A. Tanaka. 2001. Cell surface-engineered yeast displaying a histidine oligopeptide (hexa-His) has enhanced adsorption of and tolerance to heavy metal ions. Appl. Microbiol. Biotechnol. 57:697-701. PubMed
Lipke, P. N., and R. Ovalle. 1998. Cell wall architecture in yeast: new structure and new challenges. J. Bacteriol. 180:3735-3740. PubMed PMC
Macek, T., P. Kotrba, A. Svatoš, K. Demnerová, M. Nováková, and M. Macková. 2008. Novel roles for GM plants in environmental protection. Trends Biotechnol. 26:146-152. PubMed
Marseaut, S., A. Debourg, P. Dostálek, J. Votruba, G. Kuncová, and J. M. Tobin. 2004. A silica matrix biosorbent of cadmium. Int. Biodeterior. Biodegradation 54:209-214.
McBride, M. B. 1994. Environmental chemistry of soils, p. 121-168. Oxford University Press, New York, NY.
Mergeay, M., S. Monchy, T. Vallaeys, V. Auquier, A. Benotmane, P. Bertin, S. Taghavi, J. Dunn, D. van der Lelie, and R. Wattinez. 2003. Ralstonia metallidurans, a bacterium specifically adapted to toxic metals: towards a catalogue of metal-responsive genes. FEMS Microbiol. Rev. 27:385-410. PubMed
Mumberg, D., R. Müller, and M. Funk. 1995. Yeast vectors for the controlled expression of heterologous proteins in different genetic backgrounds. Gene 156:119-122. PubMed
Muyzer, G., and A. J. Stams. 2008. The ecology and biotechnology of sulphate-reducing bacteria. Nat. Rev. Microbiol. 6:441-454. PubMed
Naja, G., C. Mustin, J. Berthelin, and B. Volesky. 2005. Lead biosorption study with Rhizopus arrhizus using metal-based titration technique. J. Coll. Int. Sci. 292:537-543. PubMed
Peakall, D., and J. Burger. 2003. Methodologies for assessing exposure to metals: speciation, bioavailability of metals, and ecological host factors. Ecotoxicol. Environ. Saf. 56:110-121. PubMed
Raize, O., Y. Argaman, and S. Yannai. 2004. Mechanisms of Biosorption of different heavy metals by brown marine macroalgae. Biotechnol. Bioeng. 87:451-458. PubMed
Rensing, C., M. Ghosh, and B. P. Rosen. 1999. Families of soft-metal-ion-transporting ATPases. J. Bacteriol. 181:5891-5897. PubMed PMC
Romera, E., F. González, A. Ballester, M. L. Blázquez, and J. A. Muñoz. 2007. Comparative study of biosorption of heavy metals using different types of algae. Bioresour. Technol. 98:3344-3353. PubMed
Ruml, T., and P. Kotrba. 2003. Microbial control of metal pollution: an overview, p. 81-153. In M. Fingerman and R. Nagabhushanam (ed.), Recent advances in marine biotechnology, vol 8. Science Publishers, Inc., Enfield, NH.
Saleem, M., H. Brim, S. Hussain, M. Arshad, M. B. Leigh, and Zia-ul-Hassan. 2008. Perspectives on microbial cell surface display in bioremediation. Biotechnol. Adv. 26:151-161. PubMed
Sambrook, J., and D. W. Russell. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, NY.
Schreuder, M. P., S. Brekelmans, H. van den Ende, and F. M. Klis. 1993. Targeting of a heterologous protein to the cell wall of Saccharomyces cerevisiae. Yeast 9:399-409. PubMed
Silver, S., and L. T. Phung. 2005. A bacterial view of periodic table: genes and proteins for toxic inorganic ions. J. Ind. Microbiol. Biotechnol. 32:587-605. PubMed
Singh, S., S. H. Kang, A. Mulchandani, and W. Chen. 2008. Bioremediation: environmental clean-up through pathway engineering. Curr. Opin. Biotechnol. 19:437-444. PubMed
Sousa, C., P. Kotrba, T. Ruml, A. Cebola, and V. de Lorenzo. 1998. Metallosorption by Escherichia coli cells displaying yeast and mammalian metallothioneins anchored to the outer membrane protein LamB. J. Bacteriol. 180:2280-2284. PubMed PMC
Valls, M., A. Atrian, V. de Lorenzo, and L. A. Fernández. 2000. Engineering a mouse metallothionein on the cell surface of Ralstonia eutropha CH34 for immobilization of heavy metals in soil. Nat. Biotechnol. 18:661-665. PubMed
Vinopal, S., T. Ruml, and P. Kotrba. 2007. Biosorption of Cd2+ and Zn2+ by cell surface-engineered Saccharomyces cerevisiae. Int. Biodeterior. Biodegradation 60:96-102.
Volesky, B. 2003. Sorption and biosorption. BV-Sorbex, Inc., St. Lambert, Quebec, Canada.
Volesky, B., and H. A. May-Phillips. 1995. Biosorption of heavy metals by Saccharomyces cerevisiae. Appl. Microbiol. Biotechnol. 42:797-806. PubMed
Wang, J., and C. Chen. 2006. Biosorption of heavy metals by Saccharomyces cerevisiae: a review. Biotechnol. Adv. 24:427-451. PubMed
Wang, J., and C. Chen. 2009. Biosorbents for heavy metals removal and their future. Biotechnol. Adv. 27:195-226. PubMed