Subtype-selective inhibition of [methyl-3H]-N-methylscopolamine binding to muscarinic receptors by alpha-truxillic acid esters
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, P.H.S.
Grantová podpora
2-RO3-TW00171
FIC NIH HHS - United States
PubMed
10455271
PubMed Central
PMC1566119
DOI
10.1038/sj.bjp.0702646
PII: 0702646
Knihovny.cz E-zdroje
- MeSH
- alosterická regulace MeSH
- antagonisté muskarinových receptorů metabolismus farmakologie MeSH
- CHO buňky MeSH
- cyklobutany farmakologie MeSH
- křečci praví MeSH
- lidé MeSH
- N-methylskopolamin metabolismus MeSH
- receptory muskarinové klasifikace účinky léků MeSH
- tritium MeSH
- zvířata MeSH
- Check Tag
- křečci praví MeSH
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, P.H.S. MeSH
- Názvy látek
- antagonisté muskarinových receptorů MeSH
- cyklobutany MeSH
- N-methylskopolamin MeSH
- receptory muskarinové MeSH
- tritium MeSH
- truxillic acid MeSH Prohlížeč
Seven esters of alpha-truxillic acid have been synthesized: bis-3-piperidylpropyl ester and its quaternary bis-N-ethyl derivative, bis-N-diethylaminopropyl ester and its quaternary bis-N-methyl derivative, and bis-4-piperidylbutyl ester and its quaternary bis-N-methyl and bis-N-ethyl derivatives. All esters inhibited the specific binding of muscarinic receptor antagonist [methyl-3H]-N-methylscopolamine ([3H]-NMS) to muscarinic receptors in membranes of CHO cell lines stably expressing the human gene for the M1, M2, M3 or M4 subtype of muscarinic receptors. All esters displayed the highest potency at the M2 and the lowest potency at the M3 receptor subtype. In experiments performed on the M2 muscarinic receptor subtype, the affinity between the receptors and the esters was greatly increased when the concentration of ions was diminished. The highest affinities were found for the tertiary bis-3-piperidylpropyl and bis-4-piperidylbutyl aminoesters (equilibrium dissociation constants of 52 and 179 pM, respectively, in the low ionic strength medium). All investigated esters slowed down the dissociation of [3H]-NMS from the M2 muscarinic receptor subtype. [3H]-NMS dissociation from the M1, M3 and M4 muscarinic receptor subtypes was investigated in experiments with the bis-4-piperidylbutyl aminoester and also found to be decelerated. It is concluded that the esters of alpha-truxillic acid act as M2-selective allosteric modulators of muscarinic receptors and that, by their potency, the tertiary bis-3-piperidylpropyl and bis-4-piperidylbutyl aminoesters surpass the other known allosteric modulators of these receptors.
Zobrazit více v PubMed
ARENDARUK A.P., SKOLDINOV A.P., KHARKEVICH D.A. Investigations of the series of cyclobutanedicarbonyl acids. IV. Synthesis of bis-quaternary salts of alkamine esters of alpha-truxillic acid. (In Russian) Khim. Farm. Zh. 1967;4:3–8.
ARENDARUK A.P., SKOLDINOV A.P., KHARKEVICH D.A.Method of production diiodomethylate of di-(1,3-diethylaminopropanol ester) of alpha-truxillic acid (cyclobutonium) Chem. Abstr. 197379(In Russian). USSR patent 360849, Byull. No. 22P66036d
BUCKLEY N.J., BONNER T.I., BUCKLEY C.M., BRANN M.R. Antagonist binding properties of five cloned muscarinic receptors expressed in CHO-K1 cells. Mol. Pharmacol. 1989;35:469–476. PubMed
CHRISTOPOULOS A., LANZAFAME A., MITCHELSON F. Allosteric interactions at muscarinic cholinoceptors. Clin. Exp. Pharmacol. Physiol. 1998;25:185–194. PubMed
CLARK A.L., MITCHELSON F. The inhibitory effect of gallamine on muscarinic receptors. Br. J. Pharmacol. 1976;58:323–331. PubMed PMC
CRC HAND BOOK OF CHEMISTRY AND PHYSICS 1983CRC Press Inc., Boca Raton; D164–D166.64th Edition
DUNLAP J., BROWN J.H. Heterogeneity of binding sites on cardiac muscarinic receptors induced by the neuromuscular blocking agents gallamine and pancuronium. Mol. Pharmacol. 1983;24:15–22. PubMed
EHLERT F.J. Estimation of the affinities of allosteric ligands using radioligand binding and pharmacological null methods. Mol. Pharmacol. 1988;83:187–194. PubMed
ELLIS J., SEIDENBERG M. Gallamine exerts biphasic allosteric effects at muscarinic receptors. Mol. Pharmacol. 1989;35:173–176. PubMed
HOLZGRABE U., MOHR K. Allosteric modulation of ligand binding to muscarinic acetylcholine receptors. Drug Dev. Today. 1998;3:214–222.
HROMATKA O. Über die Synthese von Aminopropanolen. I. Mitteilung. Ber. Dtsch. Chem. Ges., B. 1942;75:131–138.
JAKUBÍK J., BAčÁKOVÁ L., EL-FAKAHANY E.E., TUčEK S. Subtype selectivity of the positive allosteric action of alcuronium at cloned M1–M5 muscarinic acetylcholine receptors. J. Pharmacol. Exp. Ther. 1995;274:1077–1083. PubMed
JAKUBÍK J., BAčÁKOVÁ L., EL-FAKAHANY E.E., TUčEK S. Positive cooperativity of acetylcholine and other agonists with allosteric ligands on muscarinic acetylcholine receptors. Mol. Pharmacol. 1997;52:172–179. PubMed
JAKUBÍK J., TUčEK S. Protection by alcuronium of muscarinic receptors against chemical inactivation and location of the allosteric binding site for alcuronium. J. Neurochem. 1994a;63:1932–1940. PubMed
JAKUBÍK J., TUčEK S. Two populations of muscarinic binding sites in the chick heart distinguished by affinities for ligands and selective inactivation. Br. J. Pharmacol. 1994b;113:1529–1537. PubMed PMC
JAKUBÍK J., TUčEK S. Positive allosteric interactions on cardiac muscarinic receptors: effects of chemical modifications of disulphide and carboxyl groups. Eur. J. Pharmacol. 1995;289:311–319. PubMed
KHARKEVICH D.A., SHORR V.A.Antimuscarinic and ganglion-blocking activity of neuromuscular blocking agents. New Neuromuscular Blocking Agents 1986Springer Verlag, Berlin; 191–224.In: Kharkevich D.A. ed. Handbook of Experimental Pharmacology, Vol. 79, pp
KHARKEVICH D.A., SKOLDINOV A.P.The derivatives of carboxylic acids Handbook of Experimental Pharmacology 198679Springer Verlag, Berlin; 323–369.New Neuromuscular Blocking Agents. ed. Kharkevich D.A.
KOSTENIS E., HOLZGRABE U., MOHR K. Allosteric effect on muscarinic M2-receptors of derivatives of the alkane-bis-ammonium compound W84. Comparison with bispyridinium-type allosteric modulators. Eur. J. Med. Chem. 1994;29:947–953.
LANZAFAME A., CHRISTOPOULOS A., MITCHELSON F. Interactions of agonists with an allosteric antagonist at muscarinic acetylcholine M2 receptors. Eur. J. Pharmacol. 1996;316:27–32. PubMed
LAZARENO S., BIRDSALL N.J.M. Detection, quantitation, and verification of allosteric interactions of agents with labeled and unlabeled ligands at G protein-coupled receptors: interactions of strychnine and acetylcholine at muscarinic receptors. Mol. Pharmacol. 1995;48:362–378. PubMed
LAZARENO S., GHARAGOZLOO P., KUONEN D., POPHAM A., BIRDSALL N.J.M. Sutype-selective positive cooperative interactions between brucine analogues and acetylcholine at muscarinic receptors: radioligand binding sites. Mol. Pharmacol. 1998;53:573–589. PubMed
LEE N.H., EL-FAKAHANY E.E. Allosteric antagonists of the muscarinic acetylcholine receptor. Biochem. Pharmacol. 1991;42:199–205. PubMed
MATSUI H., LAZARENO S., BIRDSALL N.J.M. Probing of the location of the allosteric site on m1 muscarinic receptors by site-directed mutagenesis. Mol. Pharmacol. 1995;47:88–98. PubMed
NEDOMA J., TUčEK S., DANILOV A.F., SHELKOVNIKOV S.A. Stabilization of antagonist binding to cardiac muscarinic acetylcholine receptors by gallamine and other neuromuscular blocking drugs. J. Pharmacol. Exp. Ther. 1986;236:219–223. PubMed
PEDDER E.K., EVELEIGH P., POYNER D., HULME E.C., BIRDSALL N.J.M. Modulation of the structure-binding relationships of antagonists for muscarinic acetylcholine receptor subtypes. Br. J. Pharmacol. 1991;103:1561–1567. PubMed PMC
PROšKA J., TUčEK S. Mechanisms of steric and cooperative actions of alcuronium on cardiac muscarinic acetylcholine receptors. Mol. Pharmacol. 1994;45:709–717. PubMed
SMORGONSKII L.M., GOLDFARB YA.L. On the effect of acid haloanhydrides on tetrahydrofurane and on some derivatives of 4-diethylaminobutanol-1. (In Russian) Zh. Obsh. Khim. 1940;10:1113–1119.
SOLOVEV V.M., ARENDARUK A.P., SKOLDINOV A.P. Dialkylaminoalkyl esters of 3,4,5-trimethoxybenzoic acid. (In Russian) Zh. Obsh. Khim. 1959;29:631–635.
STOCKTON J.M., BIRDSALL N.J.M., BURGEN A.S.V., HULME E.C. Modification of the binding properties of muscarinic receptors by gallamine. Mol. Pharmacol. 1983;23:551–557. PubMed
TRÄNKLE C., ANDRESEN I., LAMBRECHT G., MOHR K. M2 receptor binding of the selective antagonist AF-DX 384: possible involvement of the common allosteric site. Mol. Pharmacol. 1998;53:304–312. PubMed
TRÄNKLE C., ELIS K., WIESE M., MOHR K. Molecular rigidity and potency of bispyridinium type allosteric modulators at muscarinic M2-receptors. Life Sci. 1997;22:1995–2003. PubMed
TRÄNKLE C., KOSTENIS E., BURGMER U., MOHR K. Search for lead structures to develop new allosteric modulators of muscarinic receptors. J. Pharmacol. Exp. Ther. 1996;279:926–933. PubMed
TUčEK S., PROšKA J. Allosteric modulation of muscarinic acetylcholine receptors. Trends Pharmacol. Sci. 1995;16:205–212. PubMed
URBANSKÝ M., PROšKA J. Truxillic acid derivatives: high affinity, M2 selective allosteric modulators. Probes for mapping the muscarinic receptors. Life Sci. 1997;60:1170.
WAELBROECK M. Identification of drugs competing with d-tubocurarine for an allosteric site on cardiac muscarinic receptors. Mol. Pharmacol. 1994;46:685–692. PubMed
Analysis of equilibrium binding of an orthosteric tracer and two allosteric modulators
Allosteric Modulation of Muscarinic Acetylcholine Receptors