Changes in the constant potential in brain structures in rats during focal ischemia and systemic hypoxia

. 1999 Sep-Oct ; 29 (5) : 569-79.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid10596794

The functional consequences of spreading depression (SD) during the evolution of ischemic damage was studied in two models: focal cortical ischemia induced by photothrombosis of the middle cerebral artery (MCA) and systemic hypoxia induced by 0.8% carbon monoxide (CO). These studies showed that cortical waves of SD, arising spontaneously during MCA thrombosis and after arterial occlusion delayed thrombus formation and promoted the establishment of a collateral blood supply in the perifocal zone of ischemic lesions. The underlying mechanism consisted of episodes of intense vasodilation at the decay phase of every wave of SD. Respiration of 0.8% CO increased the blood carboxyhemoglobin level to 50-60%. In lightly anesthetized rats (pentobarbital 20 mg/kg), cortical and subcortical spontaneous waves of SD were transformed into stable hypoxic depolarization, leading to death of 60% of the animals or severe lesions of the central nervous system, in 20% of animals. Increases in the level of anesthesia (50 mg/kg anesthetic) prevented the spontaneous appearance of SD during long-lasting exposure to CO. In these conditions, experimentally induced waves of SD demonstrated that the hippocampus has a high sensitivity to moderate levels of hypoxia. The duration of hypoxic depolarization of the hippocampus, provoking a single SD wave, reached 30-60 min. Selective neuron damage in field CA1 was seen 30 days after hypoxia. Additionally, the left hippocampus of rats frequently showed profound morphological lesions in the form of "granules." Cerebrolysine (2.5 ml/kg daily for 10 days) completely prevented the formation of these lesions.

Zobrazit více v PubMed

Neuroreport. 1993 Jun;4(6):709-11 PubMed

Res Publ Assoc Res Nerv Ment Dis. 1993;71:51-65 PubMed

Arch Neurol. 1974 Mar;30(3):209-16 PubMed

Scand J Clin Lab Invest Suppl. 1990;203:253-9 PubMed

Neurol Res. 1995 Feb;17(1):9-16 PubMed

Proc Natl Acad Sci U S A. 1996 Apr 16;93(8):3710-4 PubMed

Electroencephalogr Clin Neurophysiol. 1987 Apr;66(4):440-7 PubMed

Brain Res. 1988 May 24;449(1-2):395-8 PubMed

J Appl Physiol (1985). 1995 Mar;78(3):1188-96 PubMed

Brain Res. 1998 Mar 9;786(1-2):104-14 PubMed

Acta Neurol Scand. 1987 Jan;75(1):1-8 PubMed

An Acad Bras Cienc. 1984 Dec;56(4):385-400 PubMed

J Basic Clin Physiol Pharmacol. 1992 Oct-Dec;3(4):323-42 PubMed

Nerv Sist. 1988;26:44-59 PubMed

Brain Res. 1993 May 7;610(2):283-94 PubMed

J Cereb Blood Flow Metab. 1995 Sep;15(5):721-7 PubMed

J Cereb Blood Flow Metab. 1990 Jul;10(4):564-71 PubMed

J Cereb Blood Flow Metab. 1996 Mar;16(2):202-13 PubMed

Brain Res. 1990 Oct 22;530(2):267-74 PubMed

Acta Neurol Scand Suppl. 1987;113:1-40 PubMed

Am J Physiol. 1958 Oct;195(1):7-22 PubMed

Stroke. 1997 Jun;28(6):1198-202 PubMed

Can J Physiol Pharmacol. 1975 Aug;53(4):644-50 PubMed

Stroke. 1990 Nov;21(11 Suppl):III179-83 PubMed

Toxicology. 1990 May 31;62(2):123-60 PubMed

Zh Vyssh Nerv Deiat Im I P Pavlova. 1990 Nov-Dec;40(6):1080-8 PubMed

Zh Vyssh Nerv Deiat Im I P Pavlova. 1998 Jul-Aug;48(4):654-63 PubMed

J Cereb Blood Flow Metab. 1992 May;12(3):371-9 PubMed

J Cereb Blood Flow Metab. 1991 Sep;11(5):829-36 PubMed

Exp Toxicol Pathol. 1997 Feb;49(1-2):29-37 PubMed

J Cereb Blood Flow Metab. 1993 Jul;13(4):568-74 PubMed

Neurosci Lett. 1996 Dec 6;220(1):53-6 PubMed

J Cereb Blood Flow Metab. 1994 Jan;14(1):20-8 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...