Animal virus receptors
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
10997129
PubMed Central
PMC7090770
DOI
10.1007/bf02816247
Knihovny.cz E-zdroje
- MeSH
- virové nemoci veterinární virologie MeSH
- virové receptory metabolismus MeSH
- viry metabolismus patogenita MeSH
- zvířata MeSH
- Check Tag
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- virové receptory MeSH
The term 'receptor' is generally accepted as the cell-surface component that participates in virus binding and facilitates subsequent viral infection. Recent advances in technology have permitted the identification of several virus receptors, increasing our understanding of the significance of this initial virus-cell and virus-host interaction. Virus binding was previously considered to involve simple recognition and attachment to a single cell surface molecule by virus attachment proteins. The classical concept of these as single entities that participate in a lock-and-key-type process has been superseded by new data indicating that binding can be a multistep process, often involving different virus-attachment proteins and more than one host-cell receptor.
Zobrazit více v PubMed
Air G.M., Laver W.G. The neuraminidase of influenza virus. Proteins. 1989;6:341–356. doi: 10.1002/prot.340060402. PubMed DOI
Albritton L.M., Tseng L., Scadden D., Cunningham J.M. A putative murine ecotropic retrovirus receptor gene encodes a multiple membrane-spanning protein and confers susceptibility to virus infection. Cell. 1989;57:659–666. doi: 10.1016/0092-8674(89)90134-7. PubMed DOI
Alcamí A., Carrascosa A.L., Vinuela E. Saturable binding sites mediate the entry of African swine fever virus into Vero cells. Virology. 1989;168:393–398. doi: 10.1016/0042-6822(89)90281-X. PubMed DOI
Alcamí A., Carrascosa A.L., Vinuela E. Interaction of African swine fever virus with macrophages. Virus Res. 1990;17:93–104. doi: 10.1016/0168-1702(90)90071-I. PubMed DOI
Allaway G.P., Pardoe U.I., Tavakkol A., Burness A.T.H. Encephalomyocarditis virus attachment. In: Crowell R.L., Lonberg-Holm K., editors. Virus Attachment and Entry into Cells. Washington (DC): American Society for Microbiology; 1986. pp. 116–125.
Anderson L.W., Anderson P.K., Liggitt H.D. Susceptibility of blood-derived monocytes and macrophages to caprine arthritis-encephalitis virus. Infect. Immun. 1983;41:837–840. PubMed PMC
Angulo A., Alcamí A., Vinuela E. Virus-host interactions in African swine fever: the attachment to cellular receptors. Arch. Virol. (Suppl.) 1993;7:169–183. PubMed
Ardman B., Khiroya R.H., Schwartz R.S. Recognition of a leukemia-related antigen by an anti-idiotypic antiserum to an anti-gp70 monoclonal antibody. J. Exp. Med. 1985;161:669–686. doi: 10.1084/jem.161.4.669. PubMed DOI PMC
Arthur L.O., Bess J.W.J., Sowder R.C., Benveniste R.E., Mann D.L., Chermann J.C., Henderson L.E. Cellular proteins bound to immunodeficiency viruses: implications for pathogenesis and vaccines. Science. 1992;258:1935–1938. doi: 10.1126/science.1470916. PubMed DOI
Bahraoui E., Benjouard A., Guetard D., Kolbe H., Gluckman J.-C., Montagnier L. Study of the interaction of HIV-1 and HIV-2 envelope glycoproteins with the CD4 receptors and role of N-glycans. AIDS Res. Hum. Retrovir. 1992;8:565–573. PubMed
Baker A.T., Varghese J.N., Laver W.G., Air G.M., Colman P.M. Three-dimensional structure of neuraminidase of subtype N9 from an avian virus. Proteins. 1987;2:111–117. doi: 10.1002/prot.340020205. PubMed DOI
Balzarini J., Schls D., Neyts J., Van Damme E., Peumans W., De Clerq E. Alpha-1,3- and alpha-1,6-d-mannose-specific plant lectins are markedly inhibitory to human immunodeficiency virus and cytomegalovirus infectionin vitro. Antimicrob. Agents Chemother. 1991;35:410–416. PubMed PMC
Ban J., Portetelle D., Altaner C., Horion B., Milan D., Krchnak V., Burny A., Kettmann R. Isolation and characterization of a 2.3-kilobase-pair cDNA fragment encoding the binding domain of the bovine leukemia virus cell receptor. J. Virol. 1993;67:1050–1057. PubMed PMC
Bass D.M., Mackow E.R., Greenberg H.B. Identification and partial characterization of a rhesus rotavirus binding glycoprotein on murine enterocytes. Virology. 1991;183:602–610. doi: 10.1016/0042-6822(91)90989-O. PubMed DOI
Bates P., Young J.A.T., Varmus H.E. A receptor for subgroup A Rous sarcoma virus is related to the low density lipoprotein receptor. Cell. 1993;74:1043–1051. doi: 10.1016/0092-8674(93)90726-7. PubMed DOI
Becker S., Spiess M., Klenk H.-D. The asialoglycoprotein receptor is a potential liver-specific receptor for Marburg virus. J. Gen. Virol. 1995;76:393–399. PubMed
Benkirane M., Corbeau P., Housset V., Devaux C. An antibody that binds the immunoglobulin CDR3-like region of the CD4 molecule inhibits provirus transcription in HIV-infected T cells. EMBO J. 1993;12:4909–4921. PubMed PMC
Bergelson J.M., Krithivas A., Celi L., Droguett G., Horwitz M.S., Wickham T., Crowell R.L., Finberg R.W. The murine CAR homolog is a receptor for coxsackie B viruses and adenoviruses. J. Virol. 1998;72:415–419. PubMed PMC
Bergelson J.M., Shepley M.P., Chan M.C., Hemler M.E., Finberg R.W. Identification of the integrin VLA-2 as a receptor for echovirus 1. Science. 1992;255:1718–1720. doi: 10.1126/science.1553561. PubMed DOI
Bergelson J.M., St. John N., Kawaguchi S., Chan M.C., Stubdal H., Modlin J., Finberg R.W. Infection by echoviruses 1 and 8 depends on the α2 subunit of human VLA-2. J. Virol. 1993;67:6847–6852. PubMed PMC
Bergelson J.M., Chan M., Solomon K.R., St. John N.F., Lin J.H., Finberg R.W. Decay-accelerating factor (CD55), a glycosylphosphatidylinositol-anchored complement regulatory protein, is a receptor for several echoviruses. Proc. Nat. Acad. Sci. USA. 1994;91:6245–6248. doi: 10.1073/pnas.91.13.6245. PubMed DOI PMC
Berinstein A., Roivainen M., Hovi T., Mason P.W., Baxt B. Antibodies to the vitronectin receptor (integrin αVβ3) inhibit binding and infection of foot-and-mouth disease virus to cultured cells. J. Virol. 1995;69:2664–2666. PubMed PMC
Bhat S., Spitalnik S.L., Gonzalez-Scarano F., Silberberg D.H. Galactosylceramide or a derivative is an essential component of the neural receptor for HIV-1 envelope glycoprotein gp120. Proc. Nat. Acad. Sci. USA. 1991;88:7131–7134. doi: 10.1073/pnas.88.16.7131. PubMed DOI PMC
Bork P., Holm L., Sander C. The immunoglobulin fold. Structural classification, sequence patterns and common core. J. Mol. Biol. 1994;242:309–320. PubMed
Braun J.M.A., Gras G., Chapuis F., Sommerfelt M.A., Clapham P.R., Weiss R.A., Asjo B., Gluckman J.-C., Dormont D., Barre-Sinoussi F. In: Leucocyte Typing V: White Cell Differentiation Antigens. Schlossman S.F., editor. Oxford-New York: Oxford University Press; 1995. pp. 465–468.
Breau W.C., Atwood W.J., Norkin L.C. Class I major histocompatibility proteins are an essential component of the simian virus 40 receptor. J. Virol. 1992;66:2037–2045. PubMed PMC
Broder C.C., Collman R.G. Chemokine receptors and HIV. J. Leukocyt. Biol. 1997;62:20–29. PubMed
Brossmer R., Isecke R., Herrler G. A sialic acid analogue acting as a receptor determinant for binding but not for infection by influenza C virus. FEBS Lett. 1993;323:96–98. doi: 10.1016/0014-5793(93)81456-A. PubMed DOI
Broughan J.H., Wunner W.H. Characterization of protein involvement in rabies virus binding to BHK-21 cells. Arch. Virol. 1995;140:75–93. doi: 10.1007/BF01309725. PubMed DOI
Brown K.E., Anderson S.M., Young N.S. Erythrocyte P antigen: cellular receptor for B19 parvovirus. Science. 1993;262:114–117. doi: 10.1126/science.8211117. PubMed DOI
Buckland R., Wild T.F. Is CD46 the cellular receptor for measles virus? Virus Res. 1997;48:1–9. doi: 10.1016/S0168-1702(96)01421-9. PubMed DOI
Bullough P.A., Hugson F.M., Skehel J.J., Wiley D.C. Structure of influenza hemagglutinin at the pH of membrane fusion. Nature. 1994;371:37–43. doi: 10.1038/371037a0. PubMed DOI
Burmeister W.P., Ruigrok R.W.H., Cusack S. The 2.2 Å resolution crystal structure of influenza B neuraminidase and its complex with sialic acid. EMBO J. 1992;11:49–56. PubMed PMC
Chattopadhyay S.K., Lander M.R., Gupta S., Rands E., Lowy D.R. Origin of mink cytopathic focus-forming (MCF) viruses: comparison with ecotropic and xenotropic murine leukemia virus genomes. Virology. 1981;113:465–483. doi: 10.1016/0042-6822(81)90175-6. PubMed DOI
Crane S.E., Buzy J., Clements J.E. Identification of cell membrane proteins that bind visna virus. J. Virol. 1991;65:6137–6143. PubMed PMC
Crowell R.L., Tomko R.P. Receptors for picornaviruses. In: Wimmer E., editor. Cellular Receptors for Animal Viruses. Cold Spring Harbor: Cold Spring Harbor Laboratory Press; 1994. pp. 75–79.
Dalgleish A.G., Beverley P.C., Clapham P.R., Crawford D.H., Greaves M.F., Weiss A. The CD4 (T4) antigen is an essential component of the receptor for the AIDS retrovirus. Nature (London) 1984;312:763–767. doi: 10.1038/312763a0. PubMed DOI
Dallocchio F., Tomasi M., Bellini T. Activation of the Sendai virus fusion protein by receptor binding. Biochem. Biophys. Res. Commun. 1995;208:36–41. doi: 10.1006/bbrc.1995.1301. PubMed DOI
Dalziel K.G., Hopkins J., Watt N.J., Dutia B.M., Clarke M.A.K., McConnell I. Identification of a putative cellular receptor for the lentivirus visna virus. J. Gen. Virol. 1991;72:1905–1911. PubMed
Delmas B., Gelfi J., L'Haridon R., Vogel L.K., Sjostrom H., Noren O., Laude H. Aminopeptidase N is a major receptor for the enteropathogenic coronavirus TGEV. Nature (London) 1992;357:417–422. doi: 10.1038/357417a0. PubMed DOI PMC
Delmas G., Gelfi H., Sjostrom H., Noren O., Laude H. Further characterization of aminopeptidase N as a receptor for coronaviruses. Adv. Exp. Med. Biol. 1993;342:293–298. PubMed
De Meyer S., Gong Z.J., Suwandhi W., van Pelt J., Soumillion A., Yap S.H. Organ and species specificity of hepatitis B virus (HBV) infection: a review of literature with a special reference to preferential attachment of HBV to human hepatocytes. J. Virol. Hepat. 1997;4:145–153. doi: 10.1046/j.1365-2893.1997.00126.x. PubMed DOI
Doring R.E., Marcil A., Chopra A., Richardson C.D. The human CD46 molecule is a receptor for measles virus (Edmonston strain) Cell. 1993;75:295–305. doi: 10.1016/0092-8674(93)80071-L. PubMed DOI
Dunster L.M., Schneider-Schaulies J., Loffler S., Lankes W., Schwartz-Albiez R., Lottspeich F., ter Meulen V. Moesin: a cell membrane protein linked with susceptibility to measles virus infection. Virology. 1994;198:265–274. doi: 10.1006/viro.1994.1029. PubMed DOI
Durrer P., Gaudin Y., Ruigrok R.W.H., Graf R., Brunner J. Photolabeling identifies a putative fusion domain in the envelope glycoprotein of rabies and vesicular stomatitis viruses. J. Biol. Chem. 1995;270:17575–17581. doi: 10.1074/jbc.270.29.17575. PubMed DOI
Dveksler G.S., Dieffenbach C.W., Cardellichio C.B., McCuaig K., Pensiero M.N., Jiang G.-S., Beauchemin N., Holmes K.V. Several members of the mouse carcinoembryonic antigen-related glycoprotein family are functional receptors for the coronavirus mouse hepatitis virus-A59. J. Virol. 1993;67:1–8. PubMed PMC
Dveksler G.S., Pensiero M.N., Cardellichio C.B., Williams R.K., Jiang G.-S., Holmes K.V., Dieffenbach C.W. Cloning of the mouse hepatitis virus (MHV) receptor: expression in human and hamster cell lines confers susceptibility to MHV. J. Virol. 1991;65:6881–6891. PubMed PMC
Dveksler G.S., Pensiero M.N., Dieffenbach C.W., Cardellichio C.B., Basile A.A., Elias P.E., Holmes K.V. Mouse coronavirus MHV-A59 and blocking anti-receptor monoclonal antibody bind to the N-terminal domain of cellular receptor MHVR. Proc. Nat. Acad. Sci. USA. 1993;90:1716–1720. doi: 10.1073/pnas.90.5.1716. PubMed DOI PMC
Eglitis M.A., Eiden M.V., Wilson C.A. Gibbon ape leukemia virus and the amphotropic murine leukemia virus 4070A exhibit an unusual interference pattern on E36 Chinese hamster cells. J. Virol. 1993;67:5472–5477. PubMed PMC
Epand R.M., Nir S., Parolini M., Flanagan T.D. The role of the ganglioside GD1a as a receptor for Sendai virus. Biochemistry. 1995;34:1084–1089. doi: 10.1021/bi00003a045. PubMed DOI
Evander M., Frazer I.H., Payne E., Qi Y.M., Hengst K., McMillan N.A.J. Identification of the α6 integrin as a candidate receptor for papillomaviruses. J. Virol. 1997;71:2449–2456. PubMed PMC
Fantini J., Cook D.G., Nathanson N., Spitalnik S.L., Gonzalez-Scarano F. Infection of colonic epithelial cell lines by type 1 human immunodeficiency virus is associated with cell surface expression of galactosylceramide, a potential pg120 receptor. Proc. Nat. Acad. Sci. USA. 1993;90:2700–2704. doi: 10.1073/pnas.90.7.2700. PubMed DOI PMC
Feng Y., Broder C.C., Kennedy P.E., Berger E.A. HIV-1 entry co-factor: functional cDNA cloning of a seven-transmembrane, G protein-coupled receptor. Science. 1996;272:872–877. doi: 10.1126/science.272.5263.872. PubMed DOI
Fenouillet E., Gluckman J.-C., Jones I.M.: Biological roles of HIV-1 glycoprotein glycans. Paper presented atGlyco XII: 12th Internat. Symp. on Glycoconjugates, Kraków (Poland) 1993.
Fenouillet E., Gluckman J.-C., Jones I.M. Functions of HIV envelope glycans. TIBS. 1994;19:65–71. PubMed
Fischinger P.J., Nomura S., Bolognesi D.P. A novel murine oncornavirus with dual eco- and xenotropic properties. Proc. Nat. Acad. Sci. USA. 1975;72:5150–5155. doi: 10.1073/pnas.72.12.5150. PubMed DOI PMC
Fukudome K., Yoshie O., Konno T. Comparison of human, simian, and bovine rotaviruses for requirement of sialic acid in hemagglutination and cell adsorption. Virology. 1989;172:196–205. doi: 10.1016/0042-6822(89)90121-9. PubMed DOI
Furuta Y., Eriksson K., Svennerholm B., Fredman P., Horal P., Jeansson S., Vahlne A., Holmgren J., Czerkinsky C. Infection of vaginal and colonic epithelial cells by the human immunodeficiency virus type 1 is neutralized by antibodies raised against conserved epitopes on the envelope glycoprotein gp120. Proc. Nat. Acad. Sci. USA. 1994;91:12559–12563. doi: 10.1073/pnas.91.26.12559. PubMed DOI PMC
Gastka M., Morvath J., Lentz T. Rabies virus binding to the nicotinic acetylcholine receptor α subunit demonstrated by virus overlay protein binding assay. J. Gen. Virol. 1996;77:2437–2440. PubMed
Gattegno L., Ramdani A., Jouault T., Saffar L., Gluckman J.-C. Lectin-carbohydrate interactions and infectivity of human immunodeficiency virus type 1 (HIV-1) AIDS Res. Hum. Retrovir. 1992;8:27–37. doi: 10.1089/aid.1992.8.27. PubMed DOI
Geyer H., Holschbach C., Hunsmann G., Schneider J. Carbohydrates of human immunodeficiency virus. J. Biol. Chem. 1988;263:11760–11767. PubMed
Gomez-Puertas P., Rodríguez F., Oviedo J.M., Ramiro-Ibánez F., Ruiz-Gonzalvo F., Covadonga A., Escribano J.M. Neutralizing antibodies to different proteins of African swine fever virus inhibit both virus attachment and internalization. J. Virol. 1996;70:5689–5694. PubMed PMC
Gonda M.A., Luther D.G., Fong S.E., Tobin G.J. Bovine immunodeficiency virus: molecular biology and virus-host interactions. Virus Res. 1994;32:155–181. doi: 10.1016/0168-1702(94)90040-X. PubMed DOI
Gonzales-Scarano F., Pobjecky N., Nathanson N. La Crosse bunyavirus can mediate pH-dependent fusion from without. Virology. 1984;132:222–225. doi: 10.1016/0042-6822(84)90107-7. PubMed DOI
Gratama J.W., Ernberg I. Molecular epidemiology of Epstein-Barr virus infection. Adv. Cancer Res. 1995;67:197–255. PubMed
Greve J.M., Davis G., Meyer A.M., Forte C.P., Yost S.C., Marlor C.W., Kamarck M.E., McClelland A. The major human rhinovirus receptor is ICAM-1. Cell. 1989;56:839–847. doi: 10.1016/0092-8674(89)90688-0. PubMed DOI
Grewal K.K., Hamid J., Pardoe I.U., Burness A.T.H.: Transfection of bovine cells with glycophorin A cDNA induces susceptibility to encephalomyocarditis virus infection. Abstr. A-11, 7th Eur. Study Group Mol. Biol. Picornaviruses, 1991.
Gyu Y., King D.S., Shin Y.K. Insertion of a coiled-coil peptide from influenza virus hemagglutinin into membranes. Science. 1994;266:274–276. doi: 10.1126/science.7939662. PubMed DOI
Hammar L., Hirsch I., Machado A.A., De Mareuil J., Baillon J.G., Bolmont C., Chermann J.-C. Lectin-mediated effects on HIV type 1 infectionin vitro. AIDS Res. Hum. Retrovir. 1995;11:87–95. PubMed
Harouse J.M., Kunsch C., Hartle H.T., Laughlin M.A., Hoxie J.A., Wigdahl B., Gonzalez-Scarano F. CD4-independent infection of human neural cells by human immunodeficiency virus type 1. J. Virol. 1989;63:2527–2533. PubMed PMC
Harrowe G., Mitsuhashi M., Payan D.G. Measles virus-substance P receptor interactions. J. Clin. Invest. 1990;85:1324–1327. PubMed PMC
Harrowe G., Sudduth-Klinger J., Payan D.G. Measles virus-substance P receptor interaction: Jurkat lymphocytes transfected with substance P receptor cDNA enhance measles virus fusion and replication. Cell. Mol. Neurobiol. 1992;12:397–409. doi: 10.1007/BF00711541. PubMed DOI PMC
Hartley J.W., Wolford N.K., Old L.J., Rowe W.P. A new class of murine leukemia virus associated with development of spontaneous lymphomas. Proc. Nat. Acad. Sci. USA. 1977;74:789–792. doi: 10.1073/pnas.74.2.789. PubMed DOI PMC
Hartshorn K.L., Sastry K., Brown D., White M.R., Okarma T.B., Lee Y.-M., Tauber A.I. Conglutinin acts as an opsonin for influenza A viruses. J. Immunol. 1993;151:6265–6273. PubMed
Haywood A.M. Virus receptors: binding, adhesion strengthening, and changes in viral structure. J. Virol. 1994;68:1–5. PubMed PMC
Helenius A., Kartenbeck J., Simons K., Fries E. On the entry of Semliki forest virus into BHK-21 cells. J. Cell. Biol. 1980;84:404–420. doi: 10.1083/jcb.84.2.404. PubMed DOI PMC
Helenius A., Morein B., Fries E., Simons K., Robinson P., Schirrmacher V., Terhorst C., Strominger J.L. Human (HLA-A and HLA-B) and murine (H-2K and H2D) histocompatibility antigens are cell surface receptors for Semliki forest virus. Proc. Nat. Acad. Sci. USA. 1978;75:3846–3850. doi: 10.1073/pnas.75.8.3846. PubMed DOI PMC
Herrler G. Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996;70:5634–5637. PubMed PMC
Hertogs K., Leenders W.P., Depla E., De Bruin W.C., Meheus L., Raymackers J., Moshage H., Yap S.H. Endonexin II, present on human liver plasma membranes, is a specific binding protein of small hepatitis B virus (HBV) envelope protein. Virology. 1993;197:549–557. doi: 10.1006/viro.1993.1628. PubMed DOI
Hirsch V.M., Johnson P.R. Pathogenic diversity of simian immunodeficiency viruses. Virus Res. 1994;32:183–203. doi: 10.1016/0168-1702(94)90041-8. PubMed DOI
Hofer F., Gruenberger M., Kowalski H., Machat H., Huettinger M., Kuechler E., Blaas D. Members of the low density lipoprotein receptor family mediate cell entry of a minor group common cold virus. Proc. Nat. Acad. Sci. USA. 1994;91:1839–1842. doi: 10.1073/pnas.91.5.1839. PubMed DOI PMC
Holschbach C., Schneider J., Geyer H. Glycosylation of the envelope glycoprotein gp130 of simian immunodeficiency virus from sooty mangabey (Cercocebus atys) Biochem. J. 1990;267:759–766. PubMed PMC
Horuk R., Hesselgesser J., Zhou Y., Faulds D., Halks-Miller M., Harvey S., Taub D., Samson M., Parmentier M., Rucker J., Doranz B.J., Doms R.W. The CC chemokine I-309 inhibits CCR8-dependent infection by diverse HIV-1 strains. J. Biol. Chem. 1998;273:386–391. doi: 10.1074/jbc.273.1.386. PubMed DOI
Hosie M.J., Willett B.J., Dunsford T.H., Jarrett O., Neil J.C. A monoclonal antibody which blocks infection with feline immunodeficiency virus identifies a possible non-CD4 receptor. J. Virol. 1993;67:1667–1671. PubMed PMC
Huang T., Campadelli-Fiume G. Anti-idiotypic antibodies mimicking glycoprotein D of herpes simplex virus identify a cellular protein required for virus spread from cell to cell and virus-induced polykaryocytosis. Proc. Nat. Acad. Sci. USA. 1996;93:1836–1840. doi: 10.1073/pnas.93.5.1836. PubMed DOI PMC
Huang R.T.C., Lichtenberg B., Rick O. Involvement of annexin V in the entry of influenza viruses and role of phospholipids in infection. FEBS Lett. 1996;392:59–62. doi: 10.1016/0014-5793(96)00783-1. PubMed DOI
Huber S.A. VCAM-1 is a receptor for encephalomyocarditis virus on murine vascular endothelial cells. J. Virol. 1994;68:3453–3458. PubMed PMC
Jackson T., Ellard F.M., Ghazaleh R.A., Brookes S.M., Blakemore W.E., Corteyn A.H., Stuart D.I., Newman J.W.I., King A.M.Q. Efficient infection of cells in culture by type O foot-and-mouth disease virus requires binding to cell surface heparan sulfate. J. Virol. 1996;70:5282–5287. PubMed PMC
Ito T., Couceiro J.N.S.S., Kelm S., Baum L.G., Krauss S., Castrucci M.R., Donatelli I., Kida H., Paulson J.C., Webster R.G., Kawaoka Y. Molecular basis for the generation in pigs of influenza A viruses with pandemic potential. J. Virol. 1998;72:7667–7376. PubMed PMC
Jin Y.-M., Pardoe I.U., Burness A.T., Michalak T.I. Identification and characterization of the cell surface 70-kilodalton sialoglycoprotein(s) as a candidate receptor for encephalomyocarditis virus on human nucleated cells. J. Virol. 1994;68:7308–7319. PubMed PMC
Jones P.L.S.J., Korte T., Blumenthal R. Conformational changes in cell surface HIV-1 envelope glycoproteins are triggered by cooperation between cell surface CD4 and co-receptors. J. Biol. Chem. 1998;273:404–409. doi: 10.1074/jbc.273.1.404. PubMed DOI
Jungeblut C.W., Kodza H. Studies of propagation of Col SK group of viruses in various tissue culture media. Proc. Soc. Exp. Biol. Med. 1957;96:133–139. PubMed
Kaplan G., Totsuka A., Thompson P., Akatsuka A., Moritsugu Y., Feinstone S.M. Identification of a surface glycoprotein on African green monkey kidney cells as a receptor for hepatitis A virus. EMBO J. 1996;15:4282–4296. PubMed PMC
Karlsson K.A., Stromberg N. Overlay and solid-phase analysis of glycolipid receptors for bacteria and viruses. Meth. Enzymol. 1987;138:220–232. PubMed
Karlsson K.A., Angstrom J., Bergstrom J., Lanne B. Microbial interaction with animal cell surface carbohydrates. Acta Pathol. Microbiol. Immunol. 1992;100:71–83. PubMed
Kauffman R.S., Noseworthy J.H., Nepom J.T., Finberg R., Fields B.N., Greene M.I. Cell receptors for the mammalian reovirus. II. Monoclonal anti-idiotypic antibody blocks viral binding to cells. J. Immunol. 1983;131:2539–2541. PubMed
Kavanaugh M.P., Miller D.G., Zhang W., Law W., Kozak S.L., Kebat D., Miller A.D. Cell-surface receptors for gibbon ape leukemia virus and amphotropic murine retrovirus are inducible sodium-dependent phosphate symporters. Proc. Nat. Acad. Sci. USA. 1994;91:7071–7075. doi: 10.1073/pnas.91.15.7071. PubMed DOI PMC
Keljo D.J., Smith A.K. Characterization of binding of simian rotavirus SA11 to cultured epithelial cells. J. Pediatr. Gastroenterol. Nutr. 1988;7:249–256. PubMed
Kim J.W., Closs E.I., Albritton L.M., Cunningham J.M. Transport of cationic amino acids by the mouse ecotropic retrovirus receptor. Nature (London) 1991;352:725–728. doi: 10.1038/352725a0. PubMed DOI
Kimura T., Kimura-Kuroda J., Nagashima K., Yasui K. Analysis of virus-cell binding characteristics on the determination of Japanese encephalitis virus susceptibility. Arch. Virol. 1994;139:239–251. doi: 10.1007/BF01310788. PubMed DOI
Klatzmann D., Champagne E., Chamaret S., Gruest J., Guetard D., Hercend T., Gluckman J.-C., Montagnier L. T-lymphocyte T4 molecule behaves as the receptor for human retrovirus LAV. Nature (London) 1984;312:767–768. doi: 10.1038/312767a0. PubMed DOI
Kopecký J., Grubhoffer L., Kovář V., Jindrák L., Vokurková D. A putative host-cell receptor for tick-borne encephalitis virus identified by anti-idiotypic antibodies and virus affinoblotting. Intervirology. 1999;42:9–16. doi: 10.1159/000024954. PubMed DOI
Lankes W.T., Furthmayer H. Moesin: a member of the protein 4.1-talin-ezrin family of proteins. Proc. Nat. Acad. Sci. USA. 1991;88:8297–8301. doi: 10.1073/pnas.88.19.8297. PubMed DOI PMC
Lankes W.T., Griesmacher A., Grunwald J., Schwartz-Albiez R., Keller R. A heparin-binding protein involved in inhibition of smooth muscle cell proliferation. Biochem. J. 1988;251:831–842. PubMed PMC
Lawlence M.B., Springer T.A. Leukocytes roll on a selection at physiologic flow rates: distinction from and prerequisite for adhesion through integrins. Cell. 1991;65:859–873. doi: 10.1016/0092-8674(91)90393-D. PubMed DOI
Leonard C.K., Spellman M.W., Riddle L., Harris R.J., Thomas J.N., Gregory T.J. Assignment of intrachain disulfide bonds and characterization of potential glycosylation sites of the type 1 recombinant human immunodeficiency virus envelope glycoprotein (gp120) expressed in Chinese hamster ovary cells. J. Biol. Chem. 1990;265:10373–10382. PubMed
Li Y., Luo L., Rasool N., Kang C.Y. Glycosylation is necessary for the correct folding of human immunodeficiency virus gp120 in CD4 binding. J. Virol. 1993;67:584–588. PubMed PMC
Liu C., Eichelberger M.C., Compans R.W., Air G.M. Influenza type A virus neuraminidase does not play a role in viral entry, replication, assembly, or budding. J. Virol. 1995;69:1099–1106. PubMed PMC
Ludwig G.V., Kondig J.P., Smith J.F. A putative receptor for Venezuelan equine encephalitis virus from mosquito cells. J. Virol. 1996;70:5592–5599. PubMed PMC
Maddon P.J., Dalgleish A.G., McDougal J.S., Clapham R.A., Weiss R.A., Axel R. The T4 gene encodes for the AIDS virus receptor and is expressed in the immune system and in the brain. Cell. 1986;47:333–348. doi: 10.1016/0092-8674(86)90590-8. PubMed DOI
Maldov D.G., Karganova G.G., Timofeev A.V. Tick-borne encephalitis virus interaction with the target cells. Arch. Virol. 1992;127:321–325. doi: 10.1007/BF01309594. PubMed DOI
Marriott S.J., Roeder D.J., Consigli R.A. Anti-idiotypic antibodies to a polyomavirus monoclonal antibody recognize cell surface components of mouse kidney cells and prevent polyomavirus infection. J. Virol. 1987;61:2747–2753. PubMed PMC
Marsh M., Helenius A. Adsorptive endocytosis of Semliki forest virus. J. Mol. Biol. 1980;142:439–454. doi: 10.1016/0022-2836(80)90281-8. PubMed DOI
Marsh M., Bolzau E., Helenius A. Penetration of Semliki forest virus from acidic prelysosomal vacuoles. Cell. 1983;32:931–940. doi: 10.1016/0092-8674(83)90078-8. PubMed DOI
Marsh M., Matlin K., Simons K., Reggio H., White J., Kartenbeck J., Helenius A. Are lysosomes a site of enveloped-virus penetration? Cold Spring Harbor Symp. Quant. Biol. 1982;46:835–843. PubMed
Matlin K.S., Reggio J., Helenius A., Simons K. Entry pathway of influenza virus in a canine kidney cell line. J. Cell Biol. 1981;91:601–613. doi: 10.1083/jcb.91.3.601. PubMed DOI PMC
Matrosovich M., Miller Podraza H., Teneberg S., Robertson J., Karlsson K.A. Influenza viruses display high-affinity binding to human polyglycosylceramides represented on a solid-phase assay surface. Virology. 1996;223:413–416. doi: 10.1006/viro.1996.0498. PubMed DOI
Mecham R.P. Receptors for laminin on mammalian cells. FASEB J. 1991;5:2538–2546. PubMed
Mendelsohn C.L., Wimmer E., Racaniello V.R. Cellular receptor for poliovirus: molecular cloning, nucleotide sequence, and expression of a new member of the immunoglobulin superfamily. Cell. 1989;56:855–865. doi: 10.1016/0092-8674(89)90690-9. PubMed DOI
Mendez E., Barias C.F., Lopez S. Binding to sialic acids is not an essential step for the entry of animal rotaviruses to epithelial cells in culture. J. Virol. 1993;67:5253–5259. PubMed PMC
McClintock P.R., Billups L.C., Notkins A.L. Receptors for encephalomyocarditis virus on murine and human cells. Virology. 1980;106:261–272. doi: 10.1016/0042-6822(80)90249-4. PubMed DOI
Miller D.G., Miller A.D. Tunicamycin treatment of CHO cells abrogates multiple blocks to retrovirus infection, one of which is due to a secreted inhibitor. J. Virol. 1992;66:78–84. PubMed PMC
Miller D.G., Miller D. A family of retroviruses that utilize related phosphate transporters for cell entry. J. Virol. 1994;68:8270–8276. PubMed PMC
Miller D.G., Edwards R.H., Miller A.D. Cloning of the cellular receptor for amphotropic murine retroviruses reveals homology to that for gibbon ape leukemia virus. Proc. Nat. Acad. Sci. USA. 1994;91:78–82. doi: 10.1073/pnas.91.1.78. PubMed DOI PMC
Mizuochi T., Spellman M.W., Larkin M., Solomon J., Basa L., Feizi T. Carbohydrate structures of the human immunodeficiency virus (HIV) recombinant envelope glycoprotein gp120 produced in Chinese-hamster ovary cells. Biochem. J. 1988;254:599–603. PubMed PMC
Mizuochi T., Matthews T.J., Kato M., Hamako J., Titani K., Solomon J., Feizi T. Diversity of oligosaccharide structures on the envelope glycoprotein gp120 of human immunodeficiency virus 1 from the lymphoblastoid cell line H9. Presence of complex-type oligosaccharides with bisecting N-acetylglucosamine residues. J. Biol. Chem. 1990;265:8519–8524. PubMed
Moore J.P., Trkola A., Dragic T. Co-receptors for HIV-1 entry. Curr. Opin. Immunol. 1997;9:551–562. doi: 10.1016/S0952-7915(97)80110-0. PubMed DOI
Myers G., Lenroot R. HIV variation studies; HIV glycosylation: What does it portend? AIDS Res. Hum. Retrovir. 1992;8:1459–1460. PubMed
Naito S., Matsumoto S. Identification of cellular actin within the rabies virus. Virology. 1978;91:151–163. doi: 10.1016/0042-6822(78)90363-X. PubMed DOI
Nandi P., Charpilienne A., Cohen J. Interaction of rotavirus particles with liposomes. J. Virol. 1992;66:3363–3367. PubMed PMC
Naniche D., Varior-Krishnan G., Cervoni F., Wild T.F., Rossi B., Rabourdin-Combe C., Gerlier D. Human membrane cofactor protein (CD46) acts as a cellular receptor for measles virus. J. Virol. 1993;67:6025–6032. PubMed PMC
Naniche D., Wild C., Rabourdin-Combe C., Gerlier D. Measles virus hæmagglutinin induces down-regulation of gp57/67, a molecule involved in virus binding. J. Gen. Virol. 1993;74:1073–1079. PubMed
Narayan O., Kennedy-Stoskopf S., Sheffer D., Griffin D.E., Clements J.E. Activation of caprine arthritis-encephalitis virus expression during maturation of monocytes to macrophages. Infect. Immun. 1983;41:67–73. PubMed PMC
Nėdellec P., Dveksler G.S., Daniels E., Turbide C., Chow B., Basile A.A., Holmes K.V., Beauchemin N. Bgp2, a new member of the carcinoembryonic antigen-related gene family, encodes an alternative receptor for mouse hepatitis viruses. J. Virol. 1994;68:4525–4537. PubMed PMC
Neurath A.R., Strick N. The putative cell receptors for hepatitis B virus (HBV), annexin V and apolipoprotein, H, bind to lipid components of HBV. Virology. 1994;204:475–447. doi: 10.1006/viro.1994.1558. PubMed DOI
Nicholson-Weller A., Burge J., Fearon D.T., Weller P.F., Austen K.F. Isolation of a human erythrocyte membrane glyco-protein with decay accelerating activity for C3 convertases of the complement system. J. Immunol. 1982;129:184–189. PubMed
Nieva J.L., Bron R., Corver J., Wilschut J. Membrane fusion of Semliki forest virus requires sphingolipids in the target membrane. EMBO J. 1994;13:2797–2808. PubMed PMC
Norkin L.C. Virus receptors: implication for pathogenesis and the design of antiviral agents. Clin. Microbiol. Rev. 1995;8:293–315. PubMed PMC
Noseworthy J.H., Fields B.N., Dichter M.A., Sobotka C., Pizer E., Perry L.L., Nepom J.T., Greene M.I. Cell receptors for the mammalian reovirus. I. Syngeneic monoclonal anti-idiotypic antibody identifies a cell surface receptor for reovirus. J. Immunol. 1983;131:2533–2538. PubMed
O'Hara B., Johann S.V., Klinger H.P., Blair D.G., Rubinson H., Dunn K.J., Sass P., Vitek S.M., Robins T. Characterization of a human gene conferring sensitivity to infection by gibbon ape leukemia virus. Cell. Growth Differ. 1990;1:119–127. PubMed
Okhuma S., Poole B. Fluorescence probe measurement of the intralysosomal pH in living cells and the perturbation of pH by various agents. Proc. Nat. Acad. Sci. USA. 1978;75:3327–3331. doi: 10.1073/pnas.75.7.3327. PubMed DOI PMC
Pardoe I.U., Grewal K.K., Baldeh P., Hamid J., Burnes A.T.H. Persistent infection of K562 cells by encephalomyocarditis virus. J. Virol. 1990;64:6040–6044. PubMed PMC
Payne H.R., Storz J., Henk W.G. Initial events in bovine coronavirus infection: analysis through immunogold probes and lysosomotropic inhibitors. Arch. Virol. 1990;114:175–189. doi: 10.1007/BF01310747. PubMed DOI PMC
Pifat D.Y., Ennis W.H., Ward J.M., Oberste M.S., Gonda M.A. Persistent infection of rabbits with the bovine immunodeficiency-like virus. J. Virol. 1992;66:4518–4524. PubMed PMC
Pileri P., Uematsu Y., Gampagnoli S., Galli G., Falugi F., Petracca R., Weiner A.J., Houghton M., Rosa D., Grandi G., Abrignani S. Binding of hepatitis C virus to CD81. Science. 1998;282:938–940. doi: 10.1126/science.282.5390.938. PubMed DOI
Poste G., Pasternak C.A. Virus-induced cell fusion. In: Poste G., Nicholson G.L., editors. Cell Surface Reviews, Vol. 4. Amsterdam: Elsevier/North-Holland; 1978. pp. 305–357.
Price P. Are MHC proteins cellular receptors for CMV? Immunol. Today. 1994;15:295–296. doi: 10.1016/0167-5699(94)90011-6. PubMed DOI
Protopopova E.V., Konavalova S.N., Loktev V.B. Isolation of a cellular receptor for tick-borne encephalitis virus using anti-idiotypic antibodies. Vopr. Virusol. 1997;42:264–268. PubMed
Qingxue L., Spriggs M.K., Kovats S., Turk S.M., Comeau M.R., Nepom B., Hutt-Fletcher L.M. Epstein-Barr virus uses HLA class II as a cofactor for infection of B lymphocytes. J. Virol. 1997;71:4657–4662. PubMed PMC
Ramos-Castaneda J., Imbert J.L., Barron B.L., Ramos C. A 65-kDa trypsin-sensible membrane cell protein as a possible receptor for dengue virus in cultured neuroblastoma cells. J. Neurovirol. 1997;3:435–440. doi: 10.3109/13550289709031189. PubMed DOI
Rey F.A., Heinz F.X., Mandl C., Kunz C., Harrison S.C. The envelope glycoprotein from tick-borne encephalitis virus at 2 Å resolution. Nature. 1995;375:291–298. doi: 10.1038/375291a0. PubMed DOI
Roivainen M., Piirainen L., Hovi T., Virtanen I., Riikonen T., Heino J., Hyypia T. Entry of coxsackievirus A9 into host cells: specific interactions with αVβ3 integrin, the vitronectin receptor. Virology. 1994;203:357–365. doi: 10.1006/viro.1994.1494. PubMed DOI
Roivainen M., Piirainen L., Hovi T. Efficient RGD-independent entry process of coxsackievirus A9. Arch. Virol. 1996;141:1909–1919. doi: 10.1007/BF01718203. PubMed DOI
Ruiz M.-C., Alonso-Torre S.R., Charpilienne A., Vasseur M., Michelangeli F., Cohen J., Alvarado F. Rotavirus interaction with isolated membrane vesicles. J. Virol. 1994;68:4009–4016. PubMed PMC
Sattentau Q.J., Clapham P.R., Weiss R.A., Beverley P.C., Montagnier L., Alhalabi M.F., Gluckman J.-C., Klatzmann D. The human and simian immunodeficiency viruses HIV-1, HIV-2, and SIV interact with similar epitopes on their cellular receptor, the CD4 molecule. AIDS. 1988;2:101–105. doi: 10.1097/00002030-198804000-00005. PubMed DOI
Sauter N.K., Glick G.D., Crowther R.L., Park S-J., Eisen M.B., Skehel J.J., Knowles J.R., Wiley D.C. Crystallographic detection of a second ligand binding site in influenza virus hemagglutinin. Proc. Nat. Acad. Sci. USA. 1992;89:324–328. doi: 10.1073/pnas.89.1.324. PubMed DOI PMC
Sharma A., Rao Z., Fry E., Booth T., Jones E.Y., Rowlands D.J., Simmons D.L., Stuart D.I. Specific interactions between human integrin αVβ3 and chimeric hepatitis B virus core particles bearing the receptor-binding epitope of foot-and-mouth disease virus. Virology. 1997;239:150–157. doi: 10.1006/viro.1997.8833. PubMed DOI
Schultze B., Krempl C., Ballesteros M.L., Shaw L., Schauer R., Enjuanes L., Herrler G. Transmissible gastroenteritis virus, but not the related porcine respiratory coronavirus, has a sialic acid (N-glycolylneuraminic acid) binding activity. J. Virol. 1996;70:5634–5637. PubMed PMC
Simeoni L., Forte P., Auiti A., Candido A., Campese A.F., Fedele G., Di Tomaso F., Navarra M., Fantoni A. Transgenic mice expressing human HIV receptors become persistently recipient of HIV DNA after injection with infected human cell lines. Folia Microbiol. 1998;43:525–526. doi: 10.1007/BF02820812. PubMed DOI
Staunton D.E., Merluzzi V.J., Rothlein R., Barton S.D., Springer T.A. A cell adhesion molecule, ICAM-1, is the major surface receptor for rhinoviruses. Cell. 1989;56:849–853. doi: 10.1016/0092-8674(89)90689-2. PubMed DOI
Svensson L. Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992;66:5582–5585. PubMed PMC
Sagara J., Tsukita S., Yonemura S., Kawai A. Cellular actin-binding ezrin-radixin-moesin (ERM) family proteins are incorporated into the rabies virion and closely associated with viral envelope proteins in the cell. Virology. 1994;206:485–494. doi: 10.1016/S0042-6822(95)80064-6. PubMed DOI
Sagara J., Kawai A. Identification of heat shock protein 70 in the rabies virion. Virology. 1992;190:845–848. doi: 10.1016/0042-6822(92)90923-D. PubMed DOI
Schelp C., Greiser-Wilke I., Wolf G., Beer M., Moennig V., Liess B. Identification of cell membrane proteins linked to susceptibility to bovine viral diarrhoea virus infection. Arch. Virol. 1995;140:1997–2009. doi: 10.1007/BF01322688. PubMed DOI
Schnittler H.-J., Mahner F., Drenckhahn D., Klenk H.-D., Feldmann H. Replication of Marburg virus in human endothelial cells: a possible mechanism for the development of viral hemorrhagic disease. J. Clin. Invest. 1993;91:1301–1309. PubMed PMC
Smith A.L., Tignor G.H. Host cell receptors for two strains of Sindbis virus. Arch. Virol. 1980;66:11–26. doi: 10.1007/BF01315041. PubMed DOI
Sommerfelt M.A., Weiss R.A. Receptor interference groups of 20 retroviruses plating on human cells. Virology. 1990;176:58–69. doi: 10.1016/0042-6822(90)90230-O. PubMed DOI
Srnka C.A., Tiemeyer M., Gilbert J.H., Moreland M., Schweingruber H., de Lappe B.W., James P.G., Gant T., Willough R.E., Yolken R.H., Nashed M.A., Abbas S.A., Laine R.A. Cell surface ligands for rotavirus mouse intestinal glycolipids and synthetic carbohydrate analogs. Virology. 1992;190:794–805. doi: 10.1016/0042-6822(92)90917-E. PubMed DOI
Svensson L. Group C rotavirus requires sialic acid for erythrocyte and cell receptor binding. J. Virol. 1992;66:5582–5585. PubMed PMC
Stehle T., Yan Y., Benjamin T.L., Harrison S.C. Structure of murine polyomavirus complexed with an oligosaccharide receptor fragment. Nature. 1994;369:160–163. doi: 10.1038/369160a0. PubMed DOI
Tavakkol A., Burness A.T.H. Evidence for a direct role for sialic acid in the attachment of encephalomyocarditis virus to human erythrocytes. Biochemistry. 1990;29:10684–10690. doi: 10.1021/bi00499a016. PubMed DOI
Takeuchi Y., Vile R.G., Simpson G., O'Hara B., Collins M.K., Weiss R.A. Feline leukemia virus subgroup B uses the same cell surface receptor as gibbon ape leukemia virus. J. Virol. 1992;66:1219–1222. PubMed PMC
Tomassini J.E., Graham D., DeWitt C.M., Lineberger D.W., Rodkey J.A., Colonno R.J. cDNA cloning reveals that the major group rhinovirus receptor on HeLa cells is intercellular adhesion molecule 1. Proc. Nat. Acad. Sci. USA. 1989;86:4907–4911. doi: 10.1073/pnas.86.13.4907. PubMed DOI PMC
Tycko B., Maxfield F.R. Rapid acidification of endocytic vesicles containing α-2-macroglobulin. Cell. 1982;28:643–651. doi: 10.1016/0092-8674(82)90219-7. PubMed DOI
Ubol S., Griffin D.E. Identification of a putative alphavirus receptor on mouse neural cells. J. Virol. 1991;65:6913–6921. PubMed PMC
Varghese J.N., Laver W.G., Colman P.M. Structure of the influenza virus glycoprotein antigen neuraminidase at 2.9 Å resolution. Nature. 1983;303:35–40. doi: 10.1038/303035a0. PubMed DOI
Varghese J.N., McKimm-Breschkin J.L., Caldwell J.B., Kortt A.A., Colman P.M. The structure of the complex influenza virus neuraminidase and sialic acid, the viral receptor. Proteins. 1992;14:327–332. doi: 10.1002/prot.340140302. PubMed DOI
Vlasak R., Lnytzes W., Leider J., Spaan W., Palese P. The E3 protein of bovine coronavirus is a receptor-destroying enzyme with acetylesterase activity. J. Virol. 1988;62:4686–4690. PubMed PMC
van Zeijl M., Johann S.V., Closs E., Cunningham J., Eddy R., Shows T.B., O'Hara B. A human amphotropic retrovirus receptor is a second member of the gibbon ape leukemia virus receptor family. Proc. Nat. Acad. Sci. USA. 1994;91:1168–1172. doi: 10.1073/pnas.91.3.1168. PubMed DOI PMC
Vinuela E. Molecular biology of African swine fever virus. In: Becker Y., editor. African Swine Fever. Boston: Martinus Nijhoff Publishing; 1987. pp. 31–49.
Wang K.S., Kuhn R.J., Strauss E.G., Ou S., Strauss J.H. High-affinity laminin receptor is a receptor for Sindbis virus in mammalian cells. J. Virol. 1992;66:4992–5001. PubMed PMC
Wang H., Kavanaugh M.P., North R.A., Kabat D. Cell-surface receptor for ecotropic murine retroviruses is a basic amino-acid transporter. Nature (London) 1991;352:729–731. doi: 10.1038/352729a0. PubMed DOI
Ward T., Pipkin P.A., Clarkson N.A., Stone D.M., Minor P.D., Almond J.W. Decay-accelerating factor CD55 is identified as the receptor for echovirus 7 using CELICS, a rapid immuno-focal cloning method. EMBO J. 1994;13:5070–5074. PubMed PMC
Watanabe S. The receptor and pathways for human cytomegalovirus entry. Nippon Rinsho. 1998;56:44–49. PubMed
Watowich S.J., Skehel J.J., Wiley D.C. Crystal structures of influenza virus hemagglutinin in complex with high-affinity receptor analogs. Structure. 1994;2:719–731. doi: 10.1016/S0969-2126(00)00073-3. PubMed DOI
Weiss R.A. Cellular receptors and viral glycoproteins involved in retroviral entry. In: Levy J., editor. The Retroviridae. New York: Plenum Press; 1993. pp. 1–108.
Weiss R.A., Tailor C.S. Retrovirus receptors. Cell. 1995;82:531–533. doi: 10.1016/0092-8674(95)90024-1. PubMed DOI
Weis W.I., Brown J.H., Cusack S., Paulson J.C., Skehel J.J., Wiley D.C. Structure of the influenza virus hæmagglutinin complexed with its receptor, sialic acid. Nature. 1988;333:426–431. doi: 10.1038/333426a0. PubMed DOI
White J., Matlin K., Helenius A. Cell fusion by Semliki forest, influenza, and vesicular stomatitis viruses. J. Cell. Biol. 1981;89:674–679. doi: 10.1083/jcb.89.3.674. PubMed DOI PMC
Wickham T.J., Mathias P., Cheresh D.A., Nemerow G.R. Integrins αVβ3 and αVβ5 promote adenovirus internalization but not virus attachment. Cell. 1993;73:309–319. doi: 10.1016/0092-8674(93)90231-E. PubMed DOI
Willett B.J., Hosie M.J., Jarrett O., Neil J.C. Identification of a putative cellular receptor for feline immunodeficiency virus as the feline homologue of CD9. Immunology. 1994;81:228–233. PubMed PMC
Willett B., Hosie M., Shaw A., Neil J. Inhibition of feline immunodeficiency virus infection by CD9 antibody operates after virus entry and is independent of virus entry and is independent of virus tropism. J. Gen. Virol. 1997;78:611–618. PubMed
Williams R.K., Jiang G.S., Holmes K.V. Receptor for mouse hepatitis virus is a member of the carcinoembryonic antigen family of glycoproteins. Proc. Nat. Acad. Sci. USA. 1991;88:5533–5536. doi: 10.1073/pnas.88.13.5533. PubMed DOI PMC
Willoughby R.E., Yolken R.H., Schnaar R.L. Rotaviruses specifically bind to the neutral glycosphingolipid. J. Virol. 1990;64:4830–4835. PubMed PMC
Wilson C.A., Eiden M.V., Anderson W.B., Lehel C., Olah Z. The dual-function hamster receptor for amphotropic murine leukemia virus (MuLV), 10A1 MuLV, and Gibbon ape leukemia virus is a phosphate symporter. J. Virol. 1995;69:534–537. PubMed PMC
Wilson C.A., Farrell K.B., Eiden M.V. Properties of a unique form of the murine amphotropic leukemia virus receptor expressed on hamster cells. J. Virol. 1994;68:7697–7703. PubMed PMC
Wimmer E. Cellular Receptors for Animal Viruses. Cold Spring Harbor: Cold Springer Harbor Laboratory Press; 1994.
Xu G., Suzuki T., Tahara H., Kiso M., Hasegawa A., Suzuki Y. Specificity of sialyl-sugar chain mediated recognition by the hemagglutinin of human influenza B virus isolates. J. Biochem. 1994;115:202–207. PubMed
Xu R., Mohanty J.G., Crowell R.L. Receptor proteins on newborn Balb/c mouse brain cells for coxsackievirus B3 are immunologically distinct from those on HeLa cells. Virus Res. 1994;35:323–340. doi: 10.1016/0168-1702(94)00100-Q. PubMed DOI
Yasukawa M. HHV-7 infection of CD4 gene transfected cells. Nippon Rinsho. 1998;56:56–61. PubMed
Yeager C.L., Ashmun R.A., Williams R.K., Cardellichio C.B., Shapiro L.H., Look A.T., Holmes K.V. Human amino peptidase N is a receptor for human coronavirus 229E. Nature (London) 1992;357:420–422. doi: 10.1038/357420a0. PubMed DOI PMC
Yi Y., Rana S., Turner J.D., Gaddis N., Collman R.G. CXCR-4 is expressed by primary macrophages and supports CCR5-independent infection by dual-tropic but not T-tropic isolates of human immunodeficiency virus type 1. J. Virol. 1998;72:772–777. PubMed PMC
Yokomori K., Lai M.M. Mouse hepatitis virus utilizes two carcinoembryonic antigens as alternative receptors. J. Virol. 1992;66:6194–6199. PubMed PMC
Yoshikawa Y., Yamanouchi K., Takasu T., Rauf S., Ahmed A. Structural homology between hemagglutinin (HA) of measles virus and the active site of long neurotoxins. Virus Genes. 1991;5:57–67. doi: 10.1007/BF00571731. PubMed DOI
Young J.A., Bates P., Varmus H.E. Isolation of a chicken gene that confers susceptibility to infection by subgroup A avian leukosis and sarcoma viruses. J. Virol. 1993;67:1811–1814. PubMed PMC