CpG island protects Rous sarcoma virus-derived vectors integrated into nonpermissive cells from DNA methylation and transcriptional suppression
Language English Country United States Media print
Document type Comparative Study, Journal Article, Research Support, Non-U.S. Gov't
PubMed
11209056
PubMed Central
PMC14627
DOI
10.1073/pnas.98.2.565
PII: 98/2/565
Knihovny.cz E-resources
- MeSH
- Adenine Phosphoribosyltransferase genetics MeSH
- Cell Line virology MeSH
- CpG Islands * MeSH
- Defective Viruses genetics MeSH
- DNA, Viral chemistry genetics MeSH
- DNA (Cytosine-5-)-Methyltransferases metabolism MeSH
- Sarcoma, Experimental genetics virology MeSH
- Fibroblasts virology MeSH
- Transcription, Genetic * MeSH
- Genetic Vectors genetics physiology MeSH
- Virus Integration MeSH
- Terminal Repeat Sequences MeSH
- Cricetinae MeSH
- Mesocricetus MeSH
- Chick Embryo MeSH
- DNA Methylation MeSH
- Mice MeSH
- Proviruses genetics MeSH
- Gene Expression Regulation, Viral * MeSH
- Virus Replication MeSH
- Genes, Reporter MeSH
- Gene Silencing * MeSH
- Avian Sarcoma Viruses genetics physiology MeSH
- Animals MeSH
- Check Tag
- Cricetinae MeSH
- Chick Embryo MeSH
- Mice MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Comparative Study MeSH
- Names of Substances
- Adenine Phosphoribosyltransferase MeSH
- DNA, Viral MeSH
- DNA (Cytosine-5-)-Methyltransferases MeSH
CpG islands are important in the protection of adjacent housekeeping genes from de novo DNA methylation and for keeping them in a transcriptionally active state. However, little is known about their capacity to protect heterologous genes and assure position-independent transcription of adjacent transgenes or retroviral vectors. To tackle this question, we have used the mouse aprt CpG island to flank a Rous sarcoma virus (RSV)-derived reporter vector and followed the transcriptional activity of integrated vectors. RSV is an avian retrovirus which does not replicate in mammalian cells because of several blocks at all levels of the replication cycle. Here we show that our RSV-derived reporter proviruses linked to the mouse aprt gene CpG island remain undermethylated and keep their transcriptional activity after stable transfection into both avian and nonpermissive mammalian cells. This effect is most likely caused by the protection from de novo methylation provided by the CpG island and not by enhancement of the promoter strength. Our results are consistent with previous finding of CpG islands in proximity to active but not inactive proviruses and support further investigation of the protection of the gene transfer vectors from DNA methylation.
See more in PubMed
Bird A P. Nature (London) 1986;321:209–213. PubMed
Bird A P. Trends Genet. 1995;11:94–100. PubMed
Macleod D, Charlton J, Mullins J, Bird A P. Genes Dev. 1994;8:2282–2292. PubMed
Brandeis M, Frank D, Keshet I, Siegfried Z, Mendelsohn M, Nemes A, Temper V, Razin A, Cedar H. Nature (London) 1994;371:435–438. PubMed
Svoboda J. Gene. 1998;206:153–163. PubMed
Boettiger D. Cell. 1974;3:71–76. PubMed
Varmus H E, Guntaka R V, Deng C-T, Bishop J M. Cold Spring Harbor Symp Quant Biol. 1975;39:987–996. PubMed
Green A R, Searle S, Gillespie D A F, Bissell M, Wyke J A. EMBO J. 1986;5:707–711. PubMed PMC
Chiswell D J, Enrietto P J, Evans S, Quade K, Wyke J A. Virology. 1982;116:428–440. PubMed
Searle S, Gillespie D A F, Chiswell D J, Wyke J A. Nucleic Acids Res. 1984;12:5193–5210. PubMed PMC
Hejnar J, Svoboda J, Geryk J, Fincham V J, Hák R. Cell Growth Differ. 1994;5:277–285. PubMed
Overbeek P A, Lai S-P, VanQuill K R, Westphal H. Science. 1986;231:1574–1577. PubMed
Hejnar J, Plachý J, Geryk J, Machon̆ O, Trejbalová K, Guntaka R V, Svoboda J. Virology. 1999;255:171–181. PubMed
Guntaka R V, Gowda S, Wagner H, Simon D. FEBS Lett. 1987;221:332–336. PubMed
Machon̆ O, Hejnar J, Hájková P, Geryk J, Svoboda J. Gene. 1996;174:9–17. PubMed
Fincham V J, Wyke J A. J Virol. 1991;65:461–463. PubMed PMC
Svoboda J. Intervirology. 1986;26:1–60. PubMed
Rivella S, Callegari J A, May C, Tan C, Sadelain M. J Virol. 2000;74:4679–4687. PubMed PMC
Emery D W, Yannaki E, Tubb J, Stamatoyannopoulos G. Proc Natl Acad Sci USA. 2000;97:9150–9155. . (First published July 25, 2000; 10.1073/pnas.160159597) PubMed PMC
Agarval M, Austin T W, Morel F, Chen J, Bohnlein E, Plavec I. J Virol. 2000;74:3720–3728. PubMed PMC
Dang Q, Auten J, Plavec I. J Virol. 2000;74:2671–2678. PubMed PMC
Bodor J, Poliak E, Pichrtová J, Geryk J, Svoboda J. Nucleic Acids Res. 1989;17:8869. (lett.). PubMed PMC
Friedrich G, Soriano P. Genes Dev. 1991;5:1513–1523. PubMed
Olek A, Oswald J, Walter J. Nucleic Acids Res. 1996;24:5064–5066. PubMed PMC
Mummaneni P, Bishop P L, Turker M S. J Biol Chem. 1993;268:552–558. PubMed
Svoboda J, Plachý J, Hejnar J, Karakoz I, Guntaka R V, Geryk J. Immunogenetics. 1992;5:309–315. PubMed
Yoder J A, Walsh C P, Bestor T H. Trends Genet. 1997;13:335–340. PubMed
Nyce J W. In: Epigenetic Mechanisms of Gene Regulation. Russo V E, Martienssen R A, Riggs A D, editors. Plainview, NY: Cold Spring Harbor Lab. Press; 1996. pp. 561–574.
Kalberer C P, Pawliuk R, Imren S, Bachelot T, Takekoshi K J, Fabry M, Eaves C J, London I M, Humphries R K, Leblouch P. Proc Natl Acad Sci USA. 2000;97:5411–5415. . (First published May 2, 2000; 10.1073/pnas.100082597) PubMed PMC
Siegfried Z, Eden S, Mendelsohn M, Feng X, Tsuberi B-Z, Cedar H. Nat Genet. 1999;22:203–206. PubMed
The Current View of Retroviruses as Seen from the Shoulders of a Giant