Processed pseudogenes of human endogenous retroviruses generated by LINEs: their integration, stability, and distribution
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
11875026
PubMed Central
PMC155283
DOI
10.1101/gr.216902
Knihovny.cz E-zdroje
- MeSH
- dlouhé rozptýlené jaderné elementy genetika MeSH
- endogenní retroviry genetika MeSH
- fylogeneze MeSH
- GC bohatá sekvence genetika MeSH
- genom lidský MeSH
- integrace viru genetika MeSH
- lidé MeSH
- molekulární sekvence - údaje MeSH
- posttranskripční úpravy RNA genetika MeSH
- pseudogeny genetika MeSH
- RNA virová genetika MeSH
- sekvence nukleotidů genetika MeSH
- stabilita RNA genetika MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- RNA virová MeSH
We report here the presence of numerous processed pseudogenes derived from the W family of endogenous retroviruses in the human genome. These pseudogenes are structurally colinear with the retroviral mRNA followed by a poly(A) tail. Our analysis of insertion sites of HERV-W processed pseudogenes shows a strong preference for the insertion motif of long interspersed nuclear element (LINE) retrotransposons. The genomic distribution, stability during evolution, and frequent truncations at the 5' end resemble those of the pseudogenes generated by LINEs. We therefore suggest that HERV-W processed pseudogenes arose by multiple and independent LINE-mediated retrotransposition of retroviral mRNA. These data document that the majority of HERV-W copies are actually nontranscribed promoterless pseudogenes. The current search for HERV-Ws associated with several human diseases should concentrate on a small subset of transcriptionally competent elements.
Zobrazit více v PubMed
Arcot SS, Wang Z, Weber JL, Deininger PL, Batzer MA. Alu repeats: A source for the genesis of primate microsatellites. Genomics. 1995;29:136–144. PubMed
Blond JL, Beseme F, Duret L, Bouton O, Bedin F, Perron H, Mandrand B, Mallet F. Molecular characterization and placental expression of HERV-W, a new human endogenous retrovirus family. J Virol. 1999;73:1175–1185. PubMed PMC
Blond JL, Lavillette D, Cheynet V, Bouton O, Oriol G, Chapel-Fernandes S, Mandrand B, Mallet F, Cosset FL. An envelope glycoprotein of the human endogenous retrovirus HERV-W is expressed in the human placenta and fuses cells expressing the type D mammalian retrovirus receptor. J Virol. 2000;74:3321–3329. PubMed PMC
Branciforte D, Martin SL. Developmental and cell type specificity of LINE-1 expression in mouse testis: Implications for transposition. Mol Cell Biol. 1994;14:2584–2592. PubMed PMC
Brosius J. RNAs from all categories generate retrosequences that may be exapted as novel genes or regulatory elements. Gene. 1999;238:115–134. PubMed
Carteau S, Hoffmann C, Bushman F. Chromosome structure and human immunodeficiency virus type 1 cDNA integration: Centromeric alphoid repeats are a disfavored target. J Virol. 1998;72:4005–4014. PubMed PMC
Cost GJ, Boeke JD. Targeting of human retrotransposon integration is directed by the specificity of the L1 endonuclease for regions of unusual DNA structure. Biochemistry. 1998;37:18081–18093. PubMed
Cost GJ, Golding A, Schlissel MS, Boeke JD. Target DNA chromatinization modulates nicking by L1 endonuclease. Nucleic Acids Res. 2001;29:573–577. PubMed PMC
Derr LK, Strathern JN, Garfinkel DJ. RNA-mediated recombination in S. cerevisiae. Cell. 1991;67:355–364. PubMed
Dhellin O, Maestre J, Heidmann T. Functional differences between the human LINE retrotransposon and retroviral reverse transcriptases for in vivo mRNA reverse transcription. EMBO J. 1997;16:6590–6602. PubMed PMC
Dombroski BA, Mathias SL, Nanthakumar E, Scott AF, Kazazian HH., Jr Isolation of an active human transposable element. Science. 1991;254:1805–1808. PubMed
Dornburg R, Temin HM. Presence of a retroviral encapsidation sequence in nonretroviral RNA increases the efficiency of formation of cDNA genes. J Virol. 1990;64:886–889. PubMed PMC
Dunham I, Shimizu N, Roe BA, Chissoe S, Hunt AR, Collins JE, Bruskiewich R, Beare DM, Clamp M, Smink JL, et al. The DNA sequence of human chromosome 22. Nature. 1999;402:489–495. PubMed
Eddy SR. Profile hidden Markov models. Bioinformatics. 1998;14:755–763. PubMed
Esnault C, Maestre J, Heidmann T. Human LINE retrotransposons generate processed pseudogenes. Nature Genet. 2000;24:363–367. PubMed
Feng Q, Moran JV, Kazazian HH, Jr, Boeke JD. Human L1 retrotransposon encodes a conserved endonuclease required for retrotransposition. Cell. 1996;87:905–916. PubMed
Galtier N, Gouy M, Gautier C. SeaView and Phylo_win, two graphic tools for sequence alignment and molecular phylogeny. Comput Applic Biosci. 1996;12:543–548. PubMed
Gaudin P, Perron H, Favre G, Mandrand B, Juvin R, Marcel F, Beseme F, Bedin F, Mallet F, Mougin B, et al. Detection of retrovirus RNA in plasma from rheumatiod arthritis. Arthritis Rheum. 1997;40:S245.
Gaudin P, Ijaz S, Tuke PW, Marcel F, Paraz A, Seigneurin JM, Mandrand B, Perron H, Garson JA. Infrequency of detection of particle-associated MSRV/HERV-W RNA in the synovial fluid of patients with rheumatoid arthritis. Rheumatology. 2000;39:950–954. PubMed
Goncalves I, Duret L, Mouchiroud D. Nature and structure of human genes that generate retropseudogenes. Genome Res. 2000;10:672–678. PubMed PMC
Goodchild NL, Freeman JD, Mager DL. Spliced HERV-H endogenous retroviral sequences in human genomic DNA: Evidence for amplification via retrotransposition. Virology. 1995;206:164–173. PubMed
Goodier JL, Ostertag EM, Kazazian HH., Jr Transduction of 3′-flanking sequences is common in L1 retrotransposition. Hum Mol Genet. 2000;9:653–357. PubMed
International Human Genome Sequencing Consortium. Initial sequencing and analysis of the human genome. Nature. 2001;409:860–921. PubMed
Jurka J. Sequence patterns indicate an enzymatic involvement in integration of mammalian retroposons. Proc Natl Acad Sci. 1997;94:1872–1877. PubMed PMC
————— Repeats in genomic DNA: Mining and meaning. Curr Opin Struct Biol. 1998;8:333–337. PubMed
————— Repbase update: A database and an electronic journal of repetitive elements. Trends Genet. 2000;16:418–420. PubMed
Jurka J, Klonowski P, Trifonov EN. Mammalian retroposons integrate at kinkable DNA sites. Biomol Struct Dyn. 1998;15:717–721. PubMed
Karlsson H, Bachmann S, Schroder J, McArthur J, Torrey EF, Yolken RH. Retroviral RNA identified in the cerebrospinal fluids and brains of individuals with schizophrenia. Proc Natl Acad Sci. 2001;98:4634–4639. PubMed PMC
Kazazian HH., Jr An estimated frequency of endogenous insertional mutations in humans. Nature Genet. 1999;22:130. PubMed
Kazazian HH, Jr, Moran JV. The impact of L1 retrotransposons on the human genome. Nature Genet. 1998;19:19–24. PubMed
Kim H, Crow TJ. Identification and phylogeny of novel human endogenous retroviral sequences belonging to the HERV-W family on the human X chromosome. Arch Virol. 1999;144:2403–2413. PubMed
Kjellman C, Sjogren HO, Widegren B. The Y chromosome: A graveyard for endogenous retroviruses. Gene. 1995;161:163–170. PubMed
Klein HL. Genetic control of intrachromosomal recombination. BioEssays. 1995;17:147–159. PubMed
Komurian-Pradel F, Paranhos-Baccala G, Bedin F, Ounanian-Paraz A, Sodoyer M, Ott C, Rajoharison A, Garcia E, Mallet F, Mandrand B, et al. Molecular cloning and characterization of MSRV-related sequences associated with retrovirus-like particles. Virology. 1999;260:1–9. PubMed
Lambert S, Saintigny Y, Delacote F, Amiot F, Chaput B, Lecomte M, Huck S, Bertrand P, Lopez BS. Analysis of intrachromosomal homologous recombination in mammalian cell, using tandem repeat sequences. Mutat Res. 1999;433:159–168. PubMed
Leib-Mösch C, Haltmeier M, Werner T, Geigl EM, Brack-Werner R, Francke U, Erfle V, Hehlmann R. Genomic distribution and transcription of solitary HERV-K LTRs. Genomics. 1993;18:261–269. PubMed
Levine KL, Steiner B, Johnson K, Aronoff R, Quinton TJ, Linial ML. Unusual features of integrated cDNAs generated by infection with genome-free retroviruses. Mol Cell Biol. 1990;10:1891–1900. PubMed PMC
Liskay RM, Letsou A, Stachelek JL. Homology requirement for efficient gene conversion between duplicated chromosomal sequences in mammalian cells. Genetics. 1987;115:161–167. PubMed PMC
Maestre J, Tchènio T, Dhellin O, Heidmann T. mRNA retroposition in human cells: Processed pseudogene formation. EMBO J. 1995;14:6333–6338. PubMed PMC
Mager DL, Goodchild NL. Homologous recombination between the LTRs of a human retrovirus-like element causes a 5-kb deletion in two siblings. Am J Hum Genet. 1989;45:848–854. PubMed PMC
Mi S, Lee X, Li X, Veldman GM, Finnerty H, Racie L, LaVallie E, Tang XY, Edouard P, Howes S, et al. Syncytin is a captive retroviral envelope protein involved in human placental morphogenesis. Nature. 2000;403:785–789. PubMed
Moran JV, Holmes SE, Naas TP, DeBerardinis RJ, Boeke JD, Kazazian HH., Jr High frequency retrotransposition in cultured mammalian cells. Cell. 1996;87:917–927. PubMed
Morgenstern B, Werner T, Dress AWM. Multiple DNA and protein sequence alignment based on segment-to-segment comparison. Proc Natl Acad Sci. 1996;93:12098–12103. PubMed PMC
Muller HP, Varmus HE. DNA bending creates favored sites for retroviral integration: An explanation for preferred insertion sites in nucleosomes. EMBO J. 1994;13:4704–4714. PubMed PMC
Pačes J, Pavlíček A, Pačes V. HERVd: Database of human endogenous retroviruses. Nucleic Acids Res. 2002;30:205–206. PubMed PMC
Pavlíček A, Jabbari K, Pačes J, Pačes V, Hejnar J, Bernardi G. Similar integration but different stability of Alus and LINEs in the human genome. Gene. 2001;276:39–45. PubMed
Perron H, Geny C, Laurent A, Mouriquand C, Pellat J, Perret J, Seigneurin JM. Leptomeningeal cell line from multiple sclerosis with reverse transcriptase activity and viral particles. Res Virol. 1989;140:551–561. PubMed
Perron H, Garson JA, Bedin F, Beseme F, Paranhos-Baccala G, Komurian-Pradel F, Mallet F, Tuke PW, Voisset C, Blond JL, et al. Molecular identification of a novel retrovirus repeatedly isolated from patients with multiple sclerosis. Proc Natl Acad Sci. 1997;94:7583–7588. PubMed PMC
Pickeral OK, Makalowski W, Boguski MS, Boeke JD. Frequent human genomic DNA transduction driven by LINE-1 retrotransposition. Genome Res. 2000;10:411–415. PubMed PMC
Prak ET, Kazazian HH., Jr Mobile elements and the human genome. Nature Rev Genet. 2000;1:134–144. PubMed
Pryciak PM, Varmus HE. Nucleosomes, DNA-binding proteins, and DNA sequence modulate retroviral integration target site selection. Cell. 1992;69:769–780. PubMed
Rubnitz J, Subramani S. The minimum amount of homology required for homologous recombination in mammalian cells. Mol Cell Biol. 1984;4:2253–2258. PubMed PMC
Rynditch AV, Zoubak S, Tsyba L, Tryapitsina-Guley N, Bernardi G. The regional integration of retroviral sequences into the mosaic genomes of mammals. Gene. 1998;222:1–16. PubMed
Sassaman DM, Dombroski BA, Moran JV, Kimberland ML, Naas TP, DeBerardinis RJ, Gabriel A, Swergold GD, Kazazian HH., Jr Many human L1 elements are capable of retrotransposition. Nature Genet. 1997;16:37–43. PubMed
Schmid CW. Does SINE evolution preclude Alu function? Nucleic Acids Res. 1998;26:4541–4550. PubMed PMC
Schmidt EE. Transcriptional promiscuity in testes. Curr Biol. 1996;6:768–769. PubMed
Smit AF. The origin of interspersed repeats in the human genome. Curr Opin Genet Dev. 1996a;6:743–748. PubMed
————— . “Structure and evolution of mammalian interspersed repeats.” PhD thesis. Los Angeles, CA: University of Southern California; 1996b.
————— Interspersed repeats and other mementos of transposable elements in mammalian genomes. Curr Opin Genet Dev. 1999;9:657–663. PubMed
Stevens SW, Griffith JD. Sequence analysis of the human DNA flanking sites of human immunodeficiency virus type 1 integration. J Virol. 1996;70:6459–6462. PubMed PMC
Tchènio T, Segal-Bendirdjian E, Heidmann T. Generation of processed pseudogenes in murine cells. EMBO J. 1993;12:1487–1497. PubMed PMC
Vanin EF. Processed pseudogenes: Characteristics and evolution. Annu Rev Genet. 1985;19:253–272. PubMed
Venter JC, Adams MD, Myers EW, Li PW, Mural RJ, Sutton GG, Smith HO, Yandell M, Evans CA, Holt RA, et al. The sequence of the human genome. Science. 2001;291:1304–1351. PubMed
Voisset C, Bouton O, Bedin F, Duret L, Mandrand B, Mallet F, Paranhos-Baccala G. Chromosomal distribution and coding capacity of the human endogenous retrovirus HERV-W family. AIDS Res Hum Retroviruses. 2000;16:731–740. PubMed
Voliva CF, Jahn CL, Comer MB, Hutchison CA, Edgell MH. The L1Md long interspersed repeat family in the mouse: Almost all examples are truncated at one end. Nucleic Acids Res. 1983;11:8847–8850. PubMed PMC
Waldman AS, Liskay RMM. Dependence of intrachromosomal recombination in mammalian cells on uninterrupted homology. Mol Cell Biol. 1988;8:5350–5357. PubMed PMC
Wei W, Gilbert N, Ooi SL, Lawler JF, Ostertag EM, Kazazian HH, Jr, Boeke JD, Moran JV. Human L1 retrotransposition: cis preference versus trans complementation. Mol Cell Biol. 2001;21:1429–1439. PubMed PMC
Weiner AM, Deininger PL, Efstradiatis A. Nonviral retroposons: Genes, pseudogenes, and transposable elements generated by the reverse flow of genetic information. Annu Rev Biochem. 1986;55:631–661. PubMed
Zoubak S, Clay O, Bernardi G. The gene distribution of the human genome. Gene. 1996;174:95–102. PubMed
The Current View of Retroviruses as Seen from the Shoulders of a Giant