Phenolic acids reduce the genotoxicity of acridine orange and ofloxacin in Salmonella typhimurium
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
11898340
DOI
10.1007/bf02817994
Knihovny.cz E-zdroje
- MeSH
- akridinová oranž toxicita MeSH
- antimutagenní látky farmakologie MeSH
- gentisáty * MeSH
- hydroxybenzoáty farmakologie MeSH
- kyseliny kávové farmakologie MeSH
- kyseliny kumarové farmakologie MeSH
- mutageny toxicita MeSH
- ofloxacin toxicita MeSH
- propionáty MeSH
- Salmonella typhimurium účinky léků genetika MeSH
- testy genotoxicity MeSH
- vztah mezi dávkou a účinkem léčiva MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- 2,5-dihydroxybenzoic acid MeSH Prohlížeč
- akridinová oranž MeSH
- antimutagenní látky MeSH
- caffeic acid MeSH Prohlížeč
- ferulic acid MeSH Prohlížeč
- gentisáty * MeSH
- hydroxybenzoáty MeSH
- kyseliny kávové MeSH
- kyseliny kumarové MeSH
- mutageny MeSH
- ofloxacin MeSH
- p-coumaric acid MeSH Prohlížeč
- phenolic acid MeSH Prohlížeč
- propionáty MeSH
Naturally occurring plant phenolics, p-coumaric acid (PA), caffeic acid (CA), ferulic acid (FA) and gentisic acid (GA) (25-100 nmol/L) had protective effects on acridine orange (AO; 216 mumol/L)- and ofloxacin (3 mumol/L)-induced genotoxicity in Salmonella typhimurium. FA, GA and CA exhibited a significant concentration-dependent protective effect against the genotoxicity of AO and ofloxacin, with the exception of PA, which at all concentrations tested abolished the AO and ofloxacin genotoxicity. UV spectrophotometric measurements showed the interaction of PA, FA, GA and CA with AO but not with ofloxacin; this interaction is obviously responsible for the reduction of AO-induced S. typhimurium mutagenicity. In the case of ofloxacin the antimutagenic effect of PA, FA, GA and CA is assumed to be a result of their ability to scavenge reactive oxygen species (ROS) produced by ofloxacin.
Zobrazit více v PubMed
Free Radic Biol Med. 1999 May;26(9-10):1253-60 PubMed
Br J Pharmacol. 1998 Feb;123(3):565-73 PubMed
Cancer Res. 1993 Jun 15;53(12):2775-9 PubMed
Carcinogenesis. 1993 Jul;14(7):1321-5 PubMed
Crit Rev Food Sci Nutr. 1992;32(1):67-103 PubMed
Free Radic Biol Med. 1993 Aug;15(2):217-22 PubMed
Biochim Biophys Acta. 1984 Jan 17;792(1):92-7 PubMed
Folia Microbiol (Praha). 1999;44(5):513-8 PubMed
Arch Biochem Biophys. 1997 Jun 15;342(2):275-81 PubMed
Mutat Res. 2000 Aug 21;469(1):107-14 PubMed
Biochem Pharmacol. 1994 Aug 3;48(3):487-94 PubMed
Biochem Pharmacol. 1991 Aug 22;42(6):1177-9 PubMed
Biochem Pharmacol. 1992 Jan 22;43(2):147-52 PubMed
Mutat Res. 1983 May;113(3-4):173-215 PubMed
Mutat Res. 1996 Feb 29;359(2):85-93 PubMed
Mutat Res. 1998 Aug 7;416(1-2):85-92 PubMed
Arch Biochem Biophys. 1995 Nov 10;323(2):373-81 PubMed
Biosci Biotechnol Biochem. 1993 Jan;57(7):1204-5 PubMed