Control of gene expression by FNR-like proteins in facultatively anaerobic bacteria

. 2002 ; 47 (2) : 95-103.

Jazyk angličtina Země Spojené státy americké Médium print

Typ dokumentu časopisecké články, práce podpořená grantem, přehledy

Perzistentní odkaz   https://www.medvik.cz/link/pmid12058404

Facultatively anaerobic bacteria are able to adapt to many different growth conditions. Their capability to change their metabolism optimally is often ensured by FNR-like proteins. The FNR protein of Escherichia coli functions as the main regulator during the aerobic-to-anaerobic switch. Low oxygen tensions activate this protein which is expressed constitutively and is inactive under aerobic conditions. The active form is dimeric and contains a [4Fe-4S]2+ cluster. The direct dissociation of the cluster to the [2Fe-2S]2+ cluster by the effect of oxygen leads to destabilization of the FNR dimer and to loss of its activity. The active FNR induces the expression of many anaerobic genes; the set comprises over 100 of controlled genes. Many other bacteria contain one or more FNR analogues. All these proteins form the FNR family of regulatory proteins. Properties of these proteins are very distinct, sometimes even among representatives of different strains of the same bacterial species. FNR-like proteins together with other regulators (e.g., two-component system ArcBA, nitrate-sensing system NarXL, etc.) control a complicated network of modulons that is characteristic for every species or even strain and enables fine tuning of gene expression.

Zobrazit více v PubMed

Proc Biol Sci. 1991 Sep 23;245(1314):219-26 PubMed

J Bacteriol. 1995 Jul;177(14):3972-8 PubMed

J Bacteriol. 1997 Sep;179(17):5264-70 PubMed

Mol Microbiol. 1990 Nov;4(11):1831-8 PubMed

Microbiologia. 1994 Dec;10(4):371-84 PubMed

J Biol Chem. 2000 Mar 3;275(9):6234-40 PubMed

J Bacteriol. 1985 Feb;161(2):673-80 PubMed

J Bacteriol. 1992 Apr;174(7):2111-20 PubMed

EMBO J. 1995 Dec 1;14(23):5984-94 PubMed

Res Microbiol. 1994 Jun-Aug;145(5-6):450-4 PubMed

Mol Microbiol. 1996 Jun;20(6):1247-60 PubMed

J Biol Chem. 1996 Feb 2;271(5):2762-8 PubMed

Mol Microbiol. 1997 Sep;25(6):1141-8 PubMed

J Gen Microbiol. 1976 Dec;97(2):145-60 PubMed

Mol Microbiol. 1997 Mar;23(5):893-907 PubMed

J Bacteriol. 1993 Nov;175(22):7236-46 PubMed

Proc Natl Acad Sci U S A. 1998 Nov 10;95(23):13431-5 PubMed

Proc Natl Acad Sci U S A. 1997 Jun 10;94(12):6087-92 PubMed

J Mol Biol. 1987 Nov 20;198(2):311-26 PubMed

Mol Microbiol. 1994 May;12(3):433-44 PubMed

FEBS Lett. 1990 Sep 17;270(1-2):119-22 PubMed

J Bacteriol. 1995 Nov;177(22):6422-31 PubMed

FEBS Lett. 1994 Feb 28;340(1-2):59-64 PubMed

J Bacteriol. 1999 Jun;181(12):3658-65 PubMed

J Bacteriol. 2001 Jun;183(12):3606-13 PubMed

FEBS Lett. 1995 Feb 27;360(2):151-4 PubMed

J Bacteriol. 1995 Jun;177(12):3606-9 PubMed

Nucleic Acids Res. 1989 May 25;17(10):3865-74 PubMed

FEBS Lett. 1995 Aug 28;371(1):73-6 PubMed

Microbiology. 1998 Mar;144 ( Pt 3):705-17 PubMed

Arch Microbiol. 1995 Aug;164(2):81-90 PubMed

Microbiology. 1996 Mar;142 ( Pt 3):685-93 PubMed

Mol Microbiol. 1989 Jul;3(7):869-78 PubMed

FEMS Microbiol Lett. 1992 Nov 1;77(1-3):145-8 PubMed

Microbiology. 2000 Dec;146 Pt 12:3157-70 PubMed

Mol Microbiol. 1990 Feb;4(2):315-9 PubMed

Proc Natl Acad Sci U S A. 1995 Mar 28;92(7):2499-503 PubMed

Mol Microbiol. 1993 Apr;8(1):61-8 PubMed

Biochem Mol Biol Int. 1994 Feb;32(2):245-50 PubMed

J Bacteriol. 1998 Oct;180(19):5251-5 PubMed

Mol Microbiol. 1999 Mar;31(6):1681-94 PubMed

Curr Opin Microbiol. 1999 Apr;2(2):188-94 PubMed

FEMS Microbiol Lett. 1998 Sep 15;166(2):213-7 PubMed

Arch Microbiol. 1987 Mar;147(2):195-200 PubMed

Mol Microbiol. 1998 Aug;29(4):985-97 PubMed

J Bacteriol. 1991 Jan;173(1):16-22 PubMed

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...