Phosphatidyl ethanolamine is essential for targeting the arginine transporter Can1p to the plasma membrane of yeast
Language English Country Netherlands Media print
Document type Journal Article, Research Support, Non-U.S. Gov't
PubMed
12100990
DOI
10.1016/s0005-2736(02)00455-8
PII: S0005273602004558
Knihovny.cz E-resources
- MeSH
- Arginine metabolism MeSH
- Cell Membrane metabolism MeSH
- Phosphatidylethanolamines metabolism MeSH
- Fungal Proteins genetics metabolism MeSH
- Mannosyltransferases MeSH
- Membrane Proteins metabolism MeSH
- Monosaccharide Transport Proteins metabolism MeSH
- Glucose Transport Proteins, Facilitative MeSH
- Proton-Motive Force MeSH
- Proton-Translocating ATPases metabolism MeSH
- Saccharomyces cerevisiae Proteins metabolism MeSH
- Saccharomyces cerevisiae genetics metabolism MeSH
- Schizosaccharomyces pombe Proteins * MeSH
- Amino Acid Transport Systems genetics metabolism MeSH
- Amino Acid Transport Systems, Basic MeSH
- Vesicular Transport Proteins MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
- Names of Substances
- ANP1 protein, S cerevisiae MeSH Browser
- Arginine MeSH
- arginine permease MeSH Browser
- CAN1 protein, Candida albicans MeSH Browser
- Phosphatidylethanolamines MeSH
- Fungal Proteins MeSH
- HXT1 protein, S cerevisiae MeSH Browser
- Mannosyltransferases MeSH
- Membrane Proteins MeSH
- PMA1 protein, S cerevisiae MeSH Browser
- Monosaccharide Transport Proteins MeSH
- Glucose Transport Proteins, Facilitative MeSH
- Proton-Translocating ATPases MeSH
- Saccharomyces cerevisiae Proteins MeSH
- Schizosaccharomyces pombe Proteins * MeSH
- SHR3 protein, S cerevisiae MeSH Browser
- Amino Acid Transport Systems MeSH
- Amino Acid Transport Systems, Basic MeSH
- ura4 protein, S pombe MeSH Browser
- Vesicular Transport Proteins MeSH
In continuation of our previous study, we show that phosphatidyl ethanolamine (PE) depletion affects, in addition to amino acid transporters, activities of at least two other proton motive force (pmf)-driven transporters (Ura4p and Mal6p). For Can1p, we demonstrate that the lack of PE results in a failure of the permease targeting to plasma membrane. Despite the pleiotropic effect of PE depletion, a specific role of PE in secretion of a defined group of permeases can be distinguished. Pmf-driven transporters are more sensitive to the lack of PE than other plasma membrane proteins.
References provided by Crossref.org
Phospholipid biosynthesis disruption renders the yeast cells sensitive to antifungals
General and molecular microbiology and microbial genetics in the IM CAS