Induction of uncoupling protein 3 gene expression in skeletal muscle of preterm newborns

. 2003 Apr ; 53 (4) : 691-7. [epub] 20030115

Jazyk angličtina Země Spojené státy americké Médium print-electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid12612210
Odkazy

PubMed 12612210
DOI 10.1203/01.pdr.0000054687.07095.0b
PII: 01.PDR.0000054687.07095.0B
Knihovny.cz E-zdroje

Prematurity is associated with delayed postnatal activation of mitochondrial oxidative phosphorylation and impaired switch from glycolytic to oxidative metabolism. Fatty acids (FA), which represent a major energy substrate in mature muscle cells, are engaged in the postnatal activation of genes of energy metabolism and lipid oxidation. To understand the mechanism activating mitochondria in human newborns, expression of the genes for mitochondrial uncoupling proteins (UCP) was characterized in autopsy samples of skeletal (n = 28) and cardiac (n = 13) muscles of preterm neonates, who mostly died during the first postnatal month, and two aborted fetuses. Transcripts levels for UCP2, UCP3, and also for genes engaged in the transport of FA between cytoplasm and mitochondria were measured using real-time reverse transcriptase PCR. In accordance with studies in mice, our results document postnatal induction of UCP3 gene expression in skeletal muscle, involvement of nutritional FA in the induction, and a role of UCP3 in mitochondrial FA oxidation. They suggest impaired postnatal activation of UCP3 gene in neonates delivered before approximately 26 wk of gestation. Mean levels of the UCP3 transcript in skeletal muscle were by two orders of magnitude higher than in the heart. In contrast to UCP3, the UCP2 gene was active in fetuses, and its expression was not affected by nutrition. Our results support a role of UCP3 in postnatal activation of lipid oxidation in skeletal muscle and suggest the involvement of UCP3 in the delayed activation of mitochondrial energy conversion in very immature preterm neonates.

Citace poskytuje Crossref.org

Nejnovějších 20 citací...

Zobrazit více v
Medvik | PubMed

Faster postnatal decline in hepatic erythropoiesis than granulopoiesis in human newborns

. 2025 ; 13 () : 1572836. [epub] 20250520

Najít záznam

Citační ukazatele

Pouze přihlášení uživatelé

Možnosti archivace

Nahrávání dat ...