Differential regulation of gene co-expression modules in muscles and liver of preterm newborns
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
41098310
PubMed Central
PMC12518348
DOI
10.3389/fcell.2025.1645959
PII: 1645959
Knihovny.cz E-zdroje
- Klíčová slova
- WGCNA, human, mitochondria, premature newborn, tissue transcriptome,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: Newborns undergo rapid metabolic and organ adaptations after birth, which are compromised in premature newborns, leading to adverse health outcomes. Molecular mechanisms underlying these transitions remain poorly understood due to limited tissue availability. To address this gap, we characterized tissue transcriptomes using autopsy samples from a unique newborn cohort. METHODS: We analyzed liver (LI), heart (HM), and skeletal muscle (SM) transcriptomes using RNA sequencing in 41 predominantly premature newborns who died shortly after birth. Nearly 14,000 protein-coding gene transcripts per tissue were detected. RESULTS: Tissues exhibited distinct expression profiles, with LI showed the highest number of tissue-specific genes. SM gene expression correlated strongly with gestational age at birth (i.e., the prenatal development), while LI was influenced by the duration of postnatal survival (i.e., the postnatal development). HM displayed minimal changes, suggesting stable myocardial metabolism during the perinatal transition. Weighted Gene Co-expression Network Analysis (WGCNA) identified tissue-specific gene co-expression modules linked to clinical traits such as gestational age, birth weight, survival duration, nutrition, and exposure to catecholamine treatment. The key functional annotations, validated by differential expression analysis, revealed that LI and SM modules were enriched for mitochondrial metabolism and oxidative phosphorylation genes, with more pronounced prenatal development in SM, and a postnatal increase in both tissues. Data suggests that energy metabolism in SM matures first, followed by the development of muscle functions. Hepatic modules were associated with a postnatal increase in the steroid hormone/xenobiotic metabolism, and a decline in hematopoietic activity. Robust annotations to ribosome activity suggested tissue-specific changes in protein synthesis, which declined prenatally in SM, postnatally in HM. Notably, the supply of exogenous glucose and nutrition type were strongly associated with hepatic gene expression, highlighting the central role of the liver in postnatal metabolic adaptation. CONCLUSION: Overall, our study highlights tissue-specific perinatal gene regulation, with mitochondrial maturation emerging as a crucial driver of postnatal adaptation, explaining vulnerabilities in preterm infants. We provide a unique resource for characterizing developmental changes in tissue transcriptomes during the fetal-to-neonatal transition in human newborns.
Zobrazit více v PubMed
Agrawal H., Mehatre S. H., Khurana S. (2024). The hematopoietic stem cell expansion niche in fetal liver: current state of the art and the way forward. Exp. Hematol. 136, 104585. 10.1016/j.exphem.2024.104585 PubMed DOI
Bardova K., Janovska P., Vavrova A., Kopecky J., Zouhar P. (2024). Adaptive induction of nonshivering thermogenesis in muscle rather than brown fat could counteract obesity. Physiol. Res. 73 (S1), S279–S294. 10.33549/physiolres.935361 PubMed DOI PMC
Bartho L. A., Fisher J. J., Cuffe J. S. M., Perkins A. V. (2020). Mitochondrial transformations in the aging human placenta. Am. J. Physiol. Endocrinol. Metab. 319 (6), E981–E994. 10.1152/ajpendo.00354.2020 PubMed DOI
Blaauw B., Schiaffino S., Reggiani C. (2013). Mechanisms modulating skeletal muscle phenotype. Compr. Physiol. 3 (4), 1645–1687. 10.1002/cphy.c130009 PubMed DOI
Brauner P., Nibbelink M., Flachs P., Vitkova I., Kopecky P., Mertelikova I., et al. (2001). Fast decline of hematopoiesis and uncoupling protein 2 content in human liver after birth: location of the protein in Kupffer cells. Pediatr. Res. 49 (3), 440–447. 10.1203/00006450-200103000-00022 PubMed DOI
Brauner P., Kopecky P., Flachs P., Ruffer J., Sebron V., Plavka R., et al. (2002). Induction of uncoupling protein 3 gene expression in skeletal muscle of preterm newborns. Pediatr. Res. 53, 691–697. 10.1203/01.PDR.0000054687.07095.0B PubMed DOI
Brauner P., Kopecky P., Flachs P., Kuda O., Vorlicek J., Planickova L., et al. (2006). Expression of uncoupling protein 3 and GLUT4 gene in skeletal muscle of preterm newborns: possible control by AMP-activated protein kinase. Pediatr. Res. 60 (5), 569–575. 10.1203/01.PDR.0000242301.64555.e2 PubMed DOI
Cannon B., Nedergaard J. (2004). Brown adipose tissue: function and physiological significance. Physiol. Rev. 84 (1), 277–359. 10.1152/physrev.00015.2003 PubMed DOI
Cao J., O’Day D. R., Pliner H. A., Kingsley P. D., Deng M., Daza R. M., et al. (2020). A human cell atlas of fetal gene expression. Science 370 (6518), eaba7721. 10.1126/science.aba7721 PubMed DOI PMC
Cardoso-Moreira M., Halbert J., Valloton D., Velten B., Chen C., Shao Y., et al. (2019). Gene expression across mammalian organ development. Nature 571 (7766), 505–509. 10.1038/s41586-019-1338-5 PubMed DOI PMC
Charni-Natan M., Aloni-Grinstein R., Osher E., Rotter V. (2019). Liver and steroid hormones-can a touch of p53 make a difference? Front. Endocrinol. (Lausanne) 10, 374. 10.3389/fendo.2019.00374 PubMed DOI PMC
Cui Y., Zheng Y., Liu X., Yan L., Fan X., Yong J., et al. (2019). Single-cell transcriptome analysis maps the developmental track of the human heart. Cell Rep. 26 (7), 1934–1950. 10.1016/j.celrep.2019.01.079 PubMed DOI
Darmanis S., Sloan S. A., Zhang Y., Enge M., Caneda C., Shuer L. M., et al. (2015). A survey of human brain transcriptome diversity at the single cell level. Proc. Natl. Acad. Sci. U. S. A. 112 (23), 7285–7290. 10.1073/pnas.1507125112 PubMed DOI PMC
Del Rio R., Thio M., Bosio M., Figueras J., Iriondo M. (2020). Prediction of mortality in premature neonates. An updated systematic review. Pediatr (Engl Ed) 93 (1), 24–33. 10.1016/j.anpedi.2019.11.003 PubMed DOI
Deprez A., Poletto Bonetto J. H., Ravizzoni Dartora D., Dodin P., Nuyt A. M., Luu T. M., et al. (2024). Impact of preterm birth on muscle mass and function: a systematic review and meta-analysis. Eur. J. Pediatr. 183 (5), 1989–2002. 10.1007/s00431-023-05410-5 PubMed DOI
Dukic J., Ehlert U. (2023). Longitudinal course of sex steroids from pregnancy to postpartum. Endocrinology 164 (8), bqad108. 10.1210/endocr/bqad108 PubMed DOI PMC
Ezaki S., Tamura M. (2012). “Evaluation and treatment of hypotension in premature infants,” in The cardiovascular system - Physiology, diagnostics and clinical implications. Editor Gaze. D. Saitama: Siatama University, 419–444.
Faa G., Ekstrom J., Castagnola M., Gibo Y., Ottonello G., Fanos V. (2012). A developmental approach to drug-induced liver injury in newborns and children. Curr. Med. Chem. 19 (27), 4581–4594. 10.2174/092986712803306385 PubMed DOI
Ferner K., Schultz J. A., Zeller U. (2017). Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J. Anat. 231 (6), 798–822. 10.1111/joa.12689 PubMed DOI PMC
Gao S., Yan L., Wang R., Li J., Yong J., Zhou X., et al. (2018). Tracing the temporal-spatial transcriptome landscapes of the human fetal digestive tract using single-cell RNA-sequencing. Nat. Cell Biol. 20 (6), 721–734. 10.1038/s41556-018-0105-4 PubMed DOI
Garcia I., Jones E., Ramos M., Innis-Whitehouse W., Gilkerson R. (2017). The little big genome: the organization of mitochondrial DNA. Front. Biosci. (Landmark Ed.) 22 (4), 710–721. 10.2741/4511 PubMed DOI PMC
Garvey M. (2024). Neonatal infectious disease: a major contributor to infant mortality requiring advances in point-of-care diagnosis. Antibiot. (Basel) 13 (9), 877. 10.3390/antibiotics13090877 PubMed DOI PMC
Grijalva J., Vakili K. (2013). Neonatal liver physiology. Semin. Pediatr. Surg. 22 (4), 185–189. 10.1053/j.sempedsurg.2013.10.006 PubMed DOI
Haghani A., Li C. Z., Robeck T. R., Zhang J., Lu A. T., Ablaeva J., et al. (2023). DNA methylation networks underlying mammalian traits. Science 381 (6658), eabq5693. 10.1126/science.abq5693 PubMed DOI PMC
Haoui M., Vergara C., Kenzler L., Schröer J., Zimmer-Bensch G., Fleck D., et al. (2025). Kir7.1 is the physiological target for hormones and steroids that regulate uteroplacental function. Sci. Adv. 11(10), eadr5086. 10.1126/sciadv.adr5086 PubMed DOI PMC
Hawdon J. M., Ward Platt M. P., Aynsley-Green A. (1992). Patterns of metabolic adaptation for preterm and term infants in the first neonatal week. Arch. Dis. Child. 67 (4 Spec No), 357–365. 10.1136/adc.67.4_spec_no.357 PubMed DOI PMC
Hillman N. H., Kallapur S. G., Jobe A. H. (2012). Physiology of transition from intrauterine to extrauterine life. Clin. Perinatol. 39 (4), 769–783. 10.1016/j.clp.2012.09.009 PubMed DOI PMC
Hirst J. J., Palliser H. K., Yates D. M., Yawno T., Walker D. W. (2008). Neurosteroids in the fetus and neonate: potential protective role in compromised pregnancies. Neurochem. Int. 52 (4-5), 602–610. 10.1016/j.neuint.2007.07.018 PubMed DOI
Hochane M., van den Berg P. R., Fan X., Berenger-Currias N., Adegeest E., Bialecka M., et al. (2019). Single-cell transcriptomics reveals gene expression dynamics of human fetal kidney development. PLoS Biol. 17 (2), e3000152. 10.1371/journal.pbio.3000152 PubMed DOI PMC
Hondares E., Gallego-Escuredo J. M., Flachs P., Frontini A., Cereijo R., Goday A., et al. (2014). Fibroblast growth factor-21 is expressed in neonatal and pheochromocytoma-induced adult human brown adipose tissue. Metabolism 63 (3), 312–317. 10.1016/j.metabol.2013.11.014 PubMed DOI
Iruretagoyena J. I., Davis W., Bird C., Olsen J., Radue R., Teo Broman A., et al. (2014). Metabolic gene profile in early human fetal heart development. Mol. Hum. Reprod. 20 (7), 690–700. 10.1093/molehr/gau026 PubMed DOI PMC
Janovska P., Bardova K., Prouzova Z., Irodenko I., Kobets T., Haasova E., et al. (2025). Faster postnatal decline in hepatic erythropoiesis than granulopoiesis in human newborns. Front. Pediatr. 13, 1572836. 10.3389/fped.2025.1572836 PubMed DOI PMC
Klein S. L., Flanagan K. L. (2016). Sex differences in immune responses. Nat. Rev. Immunol. 16 (10), 626–638. 10.1038/nri.2016.90 PubMed DOI
Koldovsky O., Hahn P., Hromadova M., Krecek J., Macho L. (1995). Late effects of early nutritional manipulations. Physiol. Res. 44 (6), 357–360. PubMed
Krizova J., Hulkova M., Capek V., Mlejnek P., Silhavy J., Tesarova M., et al. (2021). Microarray and qPCR analysis of mitochondrial metabolism activation during prenatal and early postnatal development in rats and humans with emphasis on CoQ10 biosynthesis. Biol. (Basel) 10 (5), 418. 10.3390/biology10050418 PubMed DOI PMC
Langfelder P., Horvath S. (2008). WGCNA: an R package for weighted correlation network analysis. BMC Bioinforma. 9, 559. 10.1186/1471-2105-9-559 PubMed DOI PMC
Lawn J. E., Ohuma E. O., Bradley E., Idueta L. S., Hazel E., Okwaraji Y. B., et al. (2023). Small babies, big risks: global estimates of prevalence and mortality for vulnerable newborns to accelerate change and improve counting. Lancet 401 (10389), 1707–1719. 10.1016/S0140-6736(23)00522-6 PubMed DOI
Li T., Huang J., Jiang Y., Zeng Y., He F., Zhang M. Q., et al. (2009). Multi-stage analysis of gene expression and transcription regulation in C57/B6 mouse liver development. Genomics 93 (3), 235–242. 10.1016/j.ygeno.2008.10.006 PubMed DOI PMC
Lindskog C., Linne J., Fagerberg L., Hallstrom B. M., Sundberg C. J., Lindholm M., et al. (2015). The human cardiac and skeletal muscle proteomes defined by transcriptomics and antibody-based profiling. BMC Genomics 16 (1), 475. 10.1186/s12864-015-1686-y PubMed DOI PMC
Love M. I., Huber W., Anders S. (2014). Moderated estimation of fold change and dispersion for RNA-seq data with DESeq2. Genome Biol. 15 (12), 550. 10.1186/s13059-014-0550-8 PubMed DOI PMC
Lu Y., Shiau F., Yi W., Lu S., Wu Q., Pearson J. D., et al. (2020). Single-cell analysis of human retina identifies evolutionarily conserved and species-specific mechanisms controlling development. Dev. Cell 53 (4), 473–491. 10.1016/j.devcel.2020.04.009 PubMed DOI PMC
Mele M., Ferreira P. G., Reverter F., DeLuca D. S., Monlong J., Sammeth M., et al. (2015). Human genomics. The human transcriptome across tissues and individuals. Science 348 (6235), 660–665. 10.1126/science.aaa0355 PubMed DOI PMC
Menon R., Otto E. A., Kokoruda A., Zhou J., Zhang Z., Yoon E., et al. (2018). Single-cell analysis of progenitor cell dynamics and lineage specification in the human fetal kidney. Development 145 (16), dev164038. 10.1242/dev.164038 PubMed DOI PMC
Mercer T. R., Neph S., Dinger M. E., Crawford J., Smith M. A., Shearwood A. M., et al. (2011). The human mitochondrial transcriptome. Cell 146 (4), 645–658. 10.1016/j.cell.2011.06.051 PubMed DOI PMC
Mohammadi A., Higazy R., Gauda E. B. (2022). PGC-1α activity and mitochondrial dysfunction in preterm infants. Front. Physiol. 13, 997619. 10.3389/fphys.2022.997619 PubMed DOI PMC
O’Shaughnessy P. J., Monteiro A., Bhattacharya S., Fraser M. J., Fowler P. A. (2013). Steroidogenic enzyme expression in the human fetal liver and potential role in the endocrinology of pregnancy. Mol. Hum. Reprod. 19 (3), 177–187. 10.1093/molehr/gas059 PubMed DOI
Perin J., Mulick A., Yeung D., Villavicencio F., Lopez G., Strong K. L., et al. (2022). Global, regional, and national causes of under-5 mortality in 2000-19: an updated systematic analysis with implications for the Sustainable development goals. Lancet Child. Adolesc. Health 6 (2), 106–115. 10.1016/S2352-4642(21)00311-4 PubMed DOI PMC
Pervolaraki E., Dachtler J., Anderson R. A., Holden A. V. (2018). The developmental transcriptome of the human heart. Sci. Rep. 8 (1), 15362. 10.1038/s41598-018-33837-6 PubMed DOI PMC
Popescu D. M., Botting R. A., Stephenson E., Green K., Webb S., Jardine L., et al. (2019). Decoding human fetal liver haematopoiesis. Nature 574 (7778), 365–371. 10.1038/s41586-019-1652-y PubMed DOI PMC
Renaud H. J., Cui Y. J., Lu H., Zhong X. B., Klaassen C. D. (2014). Ontogeny of hepatic energy metabolism genes in mice as revealed by RNA-sequencing. PLoS One 9 (8), e104560. 10.1371/journal.pone.0104560 PubMed DOI PMC
Robinson D. T., Calkins K. L., Chen Y., Cober M. P., Falciglia G. H., Church D. D., et al. (2023). Guidelines for parenteral nutrition in preterm infants: the American Society for Parenteral and Enteral Nutrition. JPEN J. Parenter. Enter. Nutr. 47 (7), 830–858. 10.1002/jpen.2550 PubMed DOI
Schiaffino S., Rossi A. C., Smerdu V., Leinwand L. A., Reggiani C. (2015). Developmental myosins: expression patterns and functional significance. Skelet. Muscle 5, 22. 10.1186/s13395-015-0046-6 PubMed DOI PMC
Segal J. M., Kent D., Wesche D. J., Ng S. S., Serra M., Oules B., et al. (2019). Single cell analysis of human foetal liver captures the transcriptional profile of hepatobiliary hybrid progenitors. Nat. Commun. 10 (1), 3350. 10.1038/s41467-019-11266-x PubMed DOI PMC
Sharma A., Davis A., Shekhawat P. S. (2017). Hypoglycemia in the preterm neonate: etiopathogenesis, diagnosis, management and long-term outcomes. Transl. Pediatr. 6 (4), 335–348. 10.21037/tp.2017.10.06 PubMed DOI PMC
Singer D., Muhlfeld C. (2007). Perinatal adaptation in mammals: the impact of metabolic rate. Comp. Biochem. Physiol. A Mol. Integr. Physiol. 148 (4), 780–784. 10.1016/j.cbpa.2007.05.004 PubMed DOI
Stranecky V., Kopecky J. (2024). Changes in liver, myocardium, and skeletal muscle transcriptome across early postnatal development in preterm newborns. Zenodo. 10.5281/zenodo.14045261 DOI
Tan C. M. J., Lewandowski A. J. (2020). The transitional heart: from early embryonic and fetal development to neonatal life. Fetal Diagn Ther. 47 (5), 373–386. 10.1159/000501906 PubMed DOI PMC
Tarazona S., Furio-Tari P., Turra D., Pietro A. D., Nueda M. J., Ferrer A., et al. (2015). Data quality aware analysis of differential expression in RNA-seq with NOISeq R/Bioc package. Nucleic Acids Res. 43 (21), e140. 10.1093/nar/gkv711 PubMed DOI PMC
Valcarce C., Izquierdo J. M., Chamorro M., Cuezva J. M. (1994). Mammalian adaptation to extrauterine environment: mitochondrial functional impairment caused by prematurity. Biochem. J. 303, 855–862. 10.1042/bj3030855 PubMed DOI PMC
Villar J., Cheikh Ismail L., Victora C. G., Ohuma E. O., Bertino E., Altman D. G., et al. (2014). International standards for newborn weight, length, and head circumference by gestational age and sex: the Newborn Cross-Sectional Study of the INTERGROWTH-21st Project. Lancet 384 (9946), 857–868. 10.1016/S0140-6736(14)60932-6 PubMed DOI
Wang P., Chen Y., Yong J., Cui Y., Wang R., Wen L., et al. (2018). Dissecting the global dynamic molecular profiles of human fetal kidney development by single-cell RNA sequencing. Cell Rep. 24 (13), 3554–3567. 10.1016/j.celrep.2018.08.056 PubMed DOI
Winckelmans E., Vrijens K., Tsamou M., Janssen B. G., Saenen N. D., Roels H. A., et al. (2017). Newborn sex-specific transcriptome signatures and gestational exposure to fine particles: findings from the ENVIRONAGE birth cohort. Environ. Health 16 (1), 52. 10.1186/s12940-017-0264-y PubMed DOI PMC
Wu T., Hu E., Xu S., Chen M., Guo P., Dai Z., et al. (2021). clusterProfiler 4.0: a universal enrichment tool for interpreting omics data. Innov. (Camb) 2 (3), 100141. 10.1016/j.xinn.2021.100141 PubMed DOI PMC
Yu Y., Zhang C., Zhou G., Wu S., Qu X., Wei H., et al. (2001). Gene expression profiling in human fetal liver and identification of tissue- and developmental-stage-specific genes through compiled expression profiles and efficient cloning of full-length cDNAs. Genome Res. 11 (8), 1392–1403. 10.1101/gr.175501 PubMed DOI PMC
Zhang Y., Klein K., Sugathan A., Nassery N., Dombkowski A., Zanger U. M., et al. (2011). Transcriptional profiling of human liver identifies sex-biased genes associated with polygenic dyslipidemia and coronary artery disease. PLoS One 6 (8), e23506. 10.1371/journal.pone.0023506 PubMed DOI PMC
Zhao W., Langfelder P., Fuller T., Dong J., Li A., Hovarth S. (2010). Weighted gene coexpression network analysis: state of the art. J. Biopharm. Stat. 20 (2), 281–300. 10.1080/10543400903572753 PubMed DOI