Faster postnatal decline in hepatic erythropoiesis than granulopoiesis in human newborns
Status PubMed-not-MEDLINE Jazyk angličtina Země Švýcarsko Médium electronic-ecollection
Typ dokumentu časopisecké články
PubMed
40464045
PubMed Central
PMC12129751
DOI
10.3389/fped.2025.1572836
Knihovny.cz E-zdroje
- Klíčová slova
- RNA-Seq, gestation, haematopoiesis, human, liver, newborn, postnatal,
- Publikační typ
- časopisecké články MeSH
BACKGROUND: During human foetal development, the liver is the primary site of blood cell production, but this activity declines in the third trimester and postnatally as haematopoiesis shifts to bone marrow. In humans, this postnatal decline is not well characterized due to the scarcity of appropriate samples. OBJECTIVE: To characterize the effect of (i) gestational age at birth and (ii) length of survival after birth on hepatic haematopoiesis across various cell lineages involved. METHODS: Liver autopsy samples from 25 born-alive infants, predominantly extremely preterm newborns who died mainly between 1 day and 3 weeks after birth, were analysed. Haematopoiesis was characterized using immunohistochemical staining of established cell type-specific protein markers. RNA-sequencing data from our previous study using the same samples were also explored. RESULTS: Haematopoiesis negatively correlates with both the duration of prenatal development and the length of postnatal survival. The effect of these two factors varies across different haematopoietic cell lineages. Prenatally and early postnatally, erythropoietic cells dominated hepatic haematopoiesis but were rapidly suppressed within three days after birth. Granulopoietic activity declined more gradually after birth. Analysis of the gene expression data revealed the possible involvement of several transcription factors in lineage-specific regulatory mechanisms. CONCLUSION: This study enhances our understanding of the postnatal decline of hepatic haematopoiesis in human newborns, highlighting the differential regulation of erythropoiesis and granulopoiesis after birth. These factors bring new in-depth knowledge about the biological processes critical for postnatal adaptation of human newborns.
Zobrazit více v PubMed
Ferner K, Schultz JA, Zeller U. Comparative anatomy of neonates of the three major mammalian groups (monotremes, marsupials, placentals) and implications for the ancestral mammalian neonate morphotype. J Anat. (2017) 231:798–822. 10.1111/joa.12689 PubMed DOI PMC
Calvanese V, Mikkola HKA. The genesis of human hematopoietic stem cells. Blood. (2023) 142:519–32. 10.1182/blood.2022017934 PubMed DOI PMC
Lewis K, Yoshimoto M, Takebe T. Fetal liver hematopoiesis: from development to delivery. Stem Cell Res Ther. (2021) 12:139. 10.1186/s13287-021-02189-w PubMed DOI PMC
Laurenti E, Gottgens B. From haematopoietic stem cells to complex differentiation landscapes. Nature. (2018) 553:418–26. 10.1038/nature25022 PubMed DOI PMC
Manso BA, Rodriguez YBA, Forsberg EC. From hematopoietic stem cells to platelets: unifying differentiation pathways identified by lineage tracing mouse models. Cells. (2024) 13(8):704. 10.3390/cells13080704 PubMed DOI PMC
Cheng H, Zheng Z, Cheng T. New paradigms on hematopoietic stem cell differentiation. Protein Cell. (2020) 11:34–44. 10.1007/s13238-019-0633-0 PubMed DOI PMC
Khatib-Massalha E, Mendez-Ferrer S. Megakaryocyte diversity in ontogeny, functions and cell-cell interactions. Front Oncol. (2022) 12:840044. 10.3389/fonc.2022.840044 PubMed DOI PMC
Migliaccio G, Migliaccio AR, Petti S, Mavilio F, Russo G, Lazzaro D, et al. Human embryonic hemopoiesis. Kinetics of progenitors and precursors underlying the yolk sac—liver transition. J Clin Invest. (1986) 78:51–60. 10.1172/JCI112572 PubMed DOI PMC
Kelemen E, Calvo W, Fliedner TM. Atlas of Human Hemopoietic Development. Berlin, Heidelberg: Springer; (1979).
Fanni D, Angotzi F, Lai F, Gerosa C, Senes G, Fanos V, et al. Four stages of hepatic hematopoiesis in human embryos and fetuses. J Matern Fetal Neonatal Med. (2018) 31:701–7. 10.1080/14767058.2017.1297400 PubMed DOI
Sasaki K, Sonoda Y. Histometrical and three-dimensional analyses of liver hematopoiesis in the mouse embryo. Arch Histol Cytol. (2000) 63:137–46. 10.1679/aohc.63.137 PubMed DOI
Kawamura M, Toyabe S, Moroda T, Iiai T, Takahashi-Iwanaga H, Fukada M, et al. Neonatal granulocytosis is a postpartum event which is seen in the liver as well as in the blood. Hepatology. (1997) 26:1567–72. 10.1002/hep.510260626 PubMed DOI
Brauner P, Nibbelink M, Flachs P, Vitkova I, Kopecky P, Mertelikova I, et al. Fast decline of hematopoiesis and uncoupling protein 2 content in human liver after birth: location of the protein in Kupffer cells. Pediatr Res. (2001) 49:440–7. 10.1203/00006450-200103000-00022 PubMed DOI
Brauner P, Kopecky P, Flachs P, Ruffer J, Sebron V, Plavka R, et al. Induction of uncoupling protein 3 gene expression in skeletal muscle of preterm newborns. Pediatr Res. (2003) 53:691–7. 10.1203/01.PDR.0000054687.07095.0B PubMed DOI
Brauner P, Kopecky P, Flachs P, Kuda O, Vorlicek J, Planickova L, et al. Expression of uncoupling protein 3 and GLUT4 gene in skeletal muscle of preterm newborns: possible control by AMP-activated protein kinase. Pediatr Res. (2006) 60:569–75. 10.1203/01.PDR.0000242301.64555.e2 PubMed DOI
Janovska P, Kobets T, Steiner-Mrazova L, Svobodova M, Tesarova M, Kopecky P, et al. Differential regulation of gene co-expression modules in muscle and liver of preterm newborns. (2025). In preparation.
Stranecky V, Kopecky J. Changes in liver, myocardium, and skeletal muscle transcriptome across early postnatal development in preterm newborns. [Data set]. Zenodo; (2024). Accession number 14045261. 10.5281/zenodo.14045261 DOI
Krause DS, Fackler MJ, Civin CI, May WS. CD34: structure, biology, and clinical utility. Blood. (1996) 87:1–13. 10.1182/blood.V87.1.1.1 PubMed DOI
Uchida N, Fujisaki T, Eaves AC, Eaves CJ. Transplantable hematopoietic stem cells in human fetal liver have a CD34(+) side population (SP)phenotype. J Clin Invest. (2001) 108:1071–7. 10.1172/JCI13297 PubMed DOI PMC
Aratani Y. Myeloperoxidase: its role for host defense, inflammation, and neutrophil function. Arch Biochem Biophys. (2018) 640:47–52. 10.1016/j.abb.2018.01.004 PubMed DOI
Marsee DK, Pinkus GS, Yu H. CD71 (transferrin receptor): an effective marker for erythroid precursors in bone marrow biopsy specimens. Am J Clin Pathol. (2010) 134:429–35. 10.1309/AJCPCRK3MOAOJ6AT PubMed DOI
Katsumura KR, DeVilbiss AW, Pope NJ, Johnson KD, Bresnick EH. Transcriptional mechanisms underlying hemoglobin synthesis. Cold Spring Harb Perspect Med. (2013) 3:a015412. 10.1101/cshperspect.a015412 PubMed DOI PMC
Gruber TA, Downing JR. The biology of pediatric acute megakaryoblastic leukemia. Blood. (2015) 126:943–9. 10.1182/blood-2015-05-567859 PubMed DOI PMC
Merono A, Lucena C, Lopez A, Garrido JJ, Perez de LL, Llanes D. Immunohistochemical analysis of beta3 integrin (CD61): expression in pig tissues and human tumors. Histol Histopathol. (2002) 17:347–52. 10.14670/HH-17.347 PubMed DOI
Songdej N, Rao AK. Hematopoietic transcription factor mutations: important players in inherited platelet defects. Blood. (2017) 129:2873–81. 10.1182/blood-2016-11-709881 PubMed DOI PMC
Siatecka M, Bieker JJ. The multifunctional role of EKLF/KLF1 during erythropoiesis. Blood. (2011) 118:2044–54. 10.1182/blood-2011-03-331371 PubMed DOI PMC
Bodine DM. Introduction to the review series on transcription factors in hematopoiesis and hematologic disease. Blood. (2017) 129:2039. 10.1182/blood-2017-02-766840 PubMed DOI PMC
Skokowa J, Steinemann D, Katsman-Kuipers JE, Zeidler C, Klimenkova O, Klimiankou M, et al. Cooperativity of RUNX1 and CSF3R mutations in severe congenital neutropenia: a unique pathway in myeloid leukemogenesis. Blood. (2014) 123:2229–37. 10.1182/blood-2013-11-538025 PubMed DOI
Sadiq HF, deMello DE, Devaskar SU. The effect of intrauterine growth restriction upon fetal and postnatal hepatic glucose transporter and glucokinase proteins. Pediatr Res. (1998) 43:91–100. 10.1203/00006450-199801000-00014 PubMed DOI
Crispino JD, Horwitz MS. GATA factor mutations in hematologic disease. Blood. (2017) 129:2103–10. 10.1182/blood-2016-09-687889 PubMed DOI PMC
Kessler J, Rasmussen S, Godfrey K, Hanson M, Kiserud T. Fetal growth restriction is associated with prioritization of umbilical blood flow to the left hepatic lobe at the expense of the right lobe. Pediatr Res. (2009) 66:113–7. 10.1203/PDR.0b013e3181a29077 PubMed DOI
Kuruvilla DJ, Widness JA, Nalbant D, Schmidt RL, Mock DM, An G, et al. Estimation of adult and neonatal RBC lifespans in anemic neonates using RBCs labeled at several discrete biotin densities. Pediatr Res. (2017) 81:905–10. 10.1038/pr.2017.14 PubMed DOI PMC
Naus GJ, Amann GR, Macpherson TA. Estimation of hepatic hematopoiesis in second and third trimester ingleton gestations using flow cytometric light scatter analysis of archival autopsy tissue. Early Hum Dev. (1992) 30:101–7. 10.1016/0378-3782(92)90138-7 PubMed DOI
Motta M, Del Vecchio A, Christensen RD. The newborn with “few red blood cells” and the newborn with “too many red blood cells”. Early Hum Dev. (2013) 89:S29–32. 10.1016/S0378-3782(13)70089-6 DOI
Jacob EA. Hematological differences in newborn and aging: a review study. Hematol Transfus Int J. (2016) 3:178–90. 10.15406/htij.2016.03.00067 DOI
Ishiwata R, Morimoto Y. Fetal liver neutrophils are responsible for the postnatal neutrophil surge. bioRxiv. (2024) 2024.08.26.609612.
Saxonhouse MA, Christensen RD, Walker DM, Hutson AD, Sola MC. The concentration of circulating megakaryocyte progenitors in preterm neonates is a function of post-conceptional age. Early Hum Dev. (2004) 78:119–24. 10.1016/j.earlhumdev.2004.03.009 PubMed DOI
Castle V, Andrew M, Kelton J, Giron D, Johnston M, Carter C. Frequency and mechanism of neonatal thrombocytopenia. J Pediatr. (1986) 108:749–55. 10.1016/S0022-3476(86)81059-9 PubMed DOI
Cao J, O'Day DR, Pliner HA, Kingsley PD, Deng M, Daza RM, et al. A human cell atlas of fetal gene expression. Science. (2020) 370(6518):eaba7721. 10.1126/science.aba7721 PubMed DOI PMC