Physicochemical characterization of phosphinic pseudopeptides by capillary zone electrophoresis in highly acidic background electrolytes
Jazyk angličtina Země Německo Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
12627437
DOI
10.1002/elps.200390097
Knihovny.cz E-zdroje
- MeSH
- elektroforéza kapilární metody normy MeSH
- elektrolyty chemie MeSH
- koncentrace vodíkových iontů MeSH
- kyselina dichloroctová MeSH
- kyselina oxalová MeSH
- kyseliny fosfinové chemie MeSH
- kyseliny fosforečné MeSH
- matematika MeSH
- molekulární struktura MeSH
- osmolární koncentrace MeSH
- peptidy analýza chemie MeSH
- pufry MeSH
- teplota MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
- Názvy látek
- elektrolyty MeSH
- kyselina dichloroctová MeSH
- kyselina oxalová MeSH
- kyseliny fosfinové MeSH
- kyseliny fosforečné MeSH
- peptidy MeSH
- phosphoric acid MeSH Prohlížeč
- pufry MeSH
Phosphinic pseudopeptides (i.e., peptide isosteres with one peptide bond replaced by a phosphinic acid moiety) were analyzed and physicochemically characterized by capillary zone electrophoresis in the pH range of 1.1-3.2, employing phosphoric, phosphinic, oxalic and dichloroacetic acids as background electrolyte (BGE) constituents. The acid dissociation constant (pK(a)) of phosphinate group in phosphinic pseudopeptides and ionic mobilities of these analytes were determined from the pH dependence of their effective electrophoretic mobilities corrected to standard temperature and constant ionic strength of the BGEs. It was shown that these corrections are necessary whenever precise mobility data at very low pH are to be determined. Additionally, it was found that the ionic mobilities of the phosphinic pseudopeptides and pK(a) of their phosphinate group are affected by the BGE constituent used. The variability of migration behavior of the pseudopeptides can be attributed to their ion-pairing formation with the BGE components.
Citace poskytuje Crossref.org
Structure-activity study of new inhibitors of human betaine-homocysteine S-methyltransferase