Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways
Jazyk angličtina Země Švýcarsko Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, přehledy
PubMed
15052407
PubMed Central
PMC11138892
DOI
10.1007/s00018-003-3215-4
Knihovny.cz E-zdroje
- MeSH
- aktivace transkripce * MeSH
- DNA vazebné proteiny fyziologie MeSH
- genetická transkripce genetika MeSH
- jaderné proteiny fyziologie MeSH
- koaktivátory jaderných receptorů MeSH
- lidé MeSH
- regulace genové exprese * MeSH
- sestřih RNA MeSH
- signální transdukce * MeSH
- terciární struktura proteinů MeSH
- trans-aktivátory fyziologie MeSH
- transkripční faktory MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- přehledy MeSH
- Názvy látek
- DNA vazebné proteiny MeSH
- jaderné proteiny MeSH
- koaktivátory jaderných receptorů MeSH
- SNW1 protein, human MeSH Prohlížeč
- trans-aktivátory MeSH
- transkripční faktory MeSH
Eukaryotic gene expression requires that all the steps of messenger RNA production are regulated in concert to integrate the diverse inputs cells receive. We discuss the functioning of SNW/SKIP, an essential spliceosomal component and transcriptional coregulator, which may provide regulatory coupling of transcription initiation and splicing. SNW/SKIP potentiates the activity of important transcription factors, such as vitamin D receptor, CBF1 (RBP-Jkappa), Smad2/3, and MyoD. It synergizes with Ski in overcoming pRb-mediated cell cycle arrest, and it is targeted by the viral transactivators EBNA2 and E7. SNW/SKIP may aid in conformational transition of the gene expression machine through its avidity to nuclear matrix fractions or by recruiting foldases such as the prolyl isomerase PPIL1. The extensive list of SNW/SKIP partners, its unique primary structure, conserved from yeast to humans, and its essential character suggest a distinct function of general importance.
Zobrazit více v PubMed
Am J Sports Med. 2004 Oct-Nov;32(7):1613-8 PubMed
Eur Heart J. 2008 Oct;29(19):2388-442 PubMed
Am Heart J. 1995 Jun;129(6):1165-70 PubMed
N Engl J Med. 2005 Apr 14;352(15):1539-49 PubMed
Ann Thorac Surg. 2008 May;85(5):1820-2 PubMed
J Am Coll Cardiol. 2005 Dec 6;46(11):2134-40 PubMed
Am J Cardiol. 2003 Mar 1;91(5):538-43 PubMed
J Am Coll Cardiol. 2005 Feb 1;45(3):381-7 PubMed
Circulation. 2000 Sep 19;102(12 ):1400-6 PubMed
J Thorac Cardiovasc Surg. 2001 Dec;122(6):1107-24 PubMed
Circulation. 2003 Apr 22;107(15):1985-90 PubMed
J Am Coll Cardiol. 2005 Dec 20;46(12):2270-6 PubMed
J Heart Valve Dis. 2002 Jan;11(1):11-8; discussion 18-9 PubMed
J Thorac Cardiovasc Surg. 2003 Jan;125(1):135-43 PubMed
Circulation. 2008 Aug 19;118(8):845-52 PubMed
J Thorac Cardiovasc Surg. 1998 Feb;115(2):381-6; discussion 387-8 PubMed
Circulation. 2005 Aug 2;112(5):745-58 PubMed
Am Heart J. 2000 Apr;139(4):596-608 PubMed
J Am Soc Echocardiogr. 2003 Jul;16(7):777-802 PubMed
Herz. 2006 Feb;31(1):1-5 PubMed
Circulation. 2008 Oct 7;118(15):e523-661 PubMed
Eur J Cardiothorac Surg. 2005 May;27(5):847-53 PubMed
J Card Surg. 2004 Sep-Oct;19(5):396-400 PubMed
J Am Coll Cardiol. 2005 Feb 1;45(3):388-90 PubMed
Eur Heart J. 2003 Jul;24(13):1231-43 PubMed
Circulation. 2005 May 3;111(17):2154-6 PubMed
J Thorac Cardiovasc Surg. 1995 Apr;109 (4):676-82; discussion 682-3 PubMed
Coron Artery Dis. 2002 Sep;13(6):337-44 PubMed
J Am Coll Cardiol. 2007 Jun 5;49(22):2191-201 PubMed
Circulation. 1997 Aug 5;96(3):827-33 PubMed
Herz. 2006 Aug;31(5):406-12 PubMed
Circulation. 2001 Apr 3;103(13):1759-64 PubMed
Circulation. 2008 Aug 19;118(8):797-9 PubMed
J Am Coll Cardiol. 2005 Jul 5;46(1):113-9 PubMed
Circulation. 2004 Sep 14;110(11 Suppl 1):II103-8 PubMed
Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation