Stress-induced expression of p53 target genes is insensitive to SNW1/SKIP downregulation
Jazyk angličtina Země Velká Británie, Anglie Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
21461980
PubMed Central
PMC6275595
DOI
10.2478/s11658-011-0012-1
Knihovny.cz E-zdroje
- MeSH
- buněčné jádro metabolismus MeSH
- down regulace genetika MeSH
- fyziologický stres genetika MeSH
- HCT116 buňky MeSH
- HeLa buňky MeSH
- koaktivátory jaderných receptorů genetika metabolismus MeSH
- lidé MeSH
- lidské chromozomy metabolismus MeSH
- mitóza MeSH
- nádorový supresorový protein p53 metabolismus MeSH
- Check Tag
- lidé MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- koaktivátory jaderných receptorů MeSH
- nádorový supresorový protein p53 MeSH
- SNW1 protein, human MeSH Prohlížeč
Pharmacological inhibition of protein kinases that are responsible for the phosphorylation of the carboxy-terminal domain (CTD) of RNA Pol II during transcription by 5,6-dichloro-1-beta-D-ribofuranosyl-benzimidazole (DRB) leads to severe inhibition of mRNA synthesis and activates p53. Transcription of the p53 effectors that are induced under these conditions, such as p21 or PUMA, must bypass the requirement for CTD phosphorylation by the positive elongation factor P-TEFb. Here, we have downregulated SNW1/SKIP, a splicing factor and a transcriptional co-regulator, which was found to interact with P-TEFb and synergistically affect Tat-dependent transcription elongation of HIV 1. Using the colon cancer derived cell line HCT116, we have found that both doxorubicin- and DRB-induced expression of p21 or PUMA is insensitive to SNW1 downregulation by siRNA. This suggests that transcription of stress response genes, unlike, e.g., the SNW1-sensitive mitosis-specific genes, can proceed uncoupled from regulators that normally function under physiological conditions.
Zobrazit více v PubMed
Pluquet O., Hainaut P. Genotoxic and non-genotoxic pathways of p53 induction. Cancer Lett. 2001;174:1–15. doi: 10.1016/S0304-3835(01)00698-X. PubMed DOI
Yang H., Wen Y.Y., Zhao R., Lin Y.L., Fournier K., Yang H.Y., Qiu Y., Diaz J., Laronga C., Lee M.H. DNA damage-induced protein 14-3-3 sigma inhibits protein kinase B/Akt activation and suppresses Akt-activated cancer. Cancer Res. 2006;66:3096–3105. doi: 10.1158/0008-5472.CAN-05-3620. PubMed DOI
Nakano K., Vousden K.H. PUMA, a novel proapoptotic gene, is induced by p53. Mol. Cell. 2001;7:683–694. doi: 10.1016/S1097-2765(01)00214-3. PubMed DOI
Yu J., Zhang L., Hwang P.M., Kinzler K.W., Vogelstein B. PUMA induces the rapid apoptosis of colorectal cancer cells. Mol. Cell. 2001;7:673–682. doi: 10.1016/S1097-2765(01)00213-1. PubMed DOI
Muller M., Wilder S., Bannasch D., Israeli D., Lehlbach K., Li-Weber M., Friedman S.L., Galle P.R., Stremmel W., Oren M., Krammer P.H. p53 activates the CD95 (APO-1/Fas) gene in response to DNA damage by anticancer drugs. J. Exp. Med. 1998;188:2033–2045. doi: 10.1084/jem.188.11.2033. PubMed DOI PMC
Espinosa J.M. Mechanisms of regulatory diversity within the p53 transcriptional network. Oncogene. 2008;27:4013–4023. doi: 10.1038/onc.2008.37. PubMed DOI PMC
Hargreaves D.C., Horng T., Medzhitov R. Control of inducible gene expression by signal-dependent transcriptional elongation. Cell. 2009;138:129–145. doi: 10.1016/j.cell.2009.05.047. PubMed DOI PMC
Guenther M.G., Levine S.S., Boyer L.A., Jaenisch R., Young R.A. A chromatin landmark and transcription initiation at most promoters in human cells. Cell. 2007;130:77–88. doi: 10.1016/j.cell.2007.05.042. PubMed DOI PMC
Ramirez-Carrozzi V.R., Braas D., Bhatt D.M., Cheng C.S., Hong C., Doty K.R., Black J.C., Hoffmann A., Carey M., Smale S.T. A unifying model for the selective regulation of inducible transcription by CpG islands and nucleosome remodeling. Cell. 2009;138:114–128. doi: 10.1016/j.cell.2009.04.020. PubMed DOI PMC
Espinosa J.M., Verdun R.E., Emerson B.M. p53 functions through stress- and promoter-specific recruitment of transcription initiation components before and after DNA damage. Mol. Cell. 2003;12:1015–1027. doi: 10.1016/S1097-2765(03)00359-9. PubMed DOI
Gomes N.P., Bjerke G., Llorente B., Szostek S.A., Emerson B.M., Espinosa J.M. Gene-specific requirement for P-TEFb activity and RNA polymerase II phosphorylation within the p53 transcriptional program. Genes Dev. 2006;20:601–612. doi: 10.1101/gad.1398206. PubMed DOI PMC
Morachis J.M., Murawsky C.M., Emerson B.M. Regulation of the p53 transcriptional response by structurally diverse core promoters. Genes Dev. 2010;24:135–147. doi: 10.1101/gad.1856710. PubMed DOI PMC
Juven-Gershon T., Kadonaga J.T. Regulation of gene expression via the core promoter and the basal transcriptional machinery. Dev. Biol. 2010;339:225–229. doi: 10.1016/j.ydbio.2009.08.009. PubMed DOI PMC
Gomes N.P., Espinosa J.M. Disparate chromatin landscapes and kinetics of inactivation impact differential regulation of p53 target genes. Cell Cycle. 2010;9:3428–3437. doi: 10.4161/cc.9.17.12998. PubMed DOI PMC
Gomes N.P., Espinosa J.M. Gene-specific repression of the p53 target gene PUMA via intragenic CTCF-Cohesin binding. Genes Dev. 2010;24:1022–1034. doi: 10.1101/gad.1881010. PubMed DOI PMC
Bres V., Yoh S.M., Jones K.A. The multi-tasking P-TEFb complex. Curr. Opin. Cell Biol. 2008;20:334–340. doi: 10.1016/j.ceb.2008.04.008. PubMed DOI PMC
Lenasi T., Barboric M. P-TEFb stimulates transcription elongation and pre-mRNA splicing through multilateral mechanisms. RNA. Biol. 2010;7:145–150. doi: 10.4161/rna.7.2.11057. PubMed DOI
Turinetto V., Porcedda P., Orlando L., De Marchi M., Amoroso A., Giachino C. The cyclin-dependent kinase inhibitor 5, 6-dichloro-1-beta-D-ribofuranosylbenzimidazole induces nongenotoxic, DNA replicationindependent apoptosis of normal and leukemic cells, regardless of their p53 status. BMC Cancer. 2009;9:281. doi: 10.1186/1471-2407-9-281. PubMed DOI PMC
Medlin J., Scurry A., Taylor A., Zhang F., Peterlin B.M., Murphy S. P-TEFb is not an essential elongation factor for the intronless human U2 snRNA and histone H2b genes. EMBO J. 2005;24:4154–4165. doi: 10.1038/sj.emboj.7600876. PubMed DOI PMC
Garriga J., Xie H., Obradovic Z., Grana X. Selective control of gene expression by CDK9 in human cells. J. Cell Physiol. 2010;222:200–208. doi: 10.1002/jcp.21938. PubMed DOI PMC
Bres V., Gomes N., Pickle L., Jones K.A. A human splicing factor, SKIP, associates with P-TEFb and enhances transcription elongation by HIV-1 Tat. Genes Dev. 2005;19:1211–1226. doi: 10.1101/gad.1291705. PubMed DOI PMC
Folk P., Puta F., Skruzny M. Transcriptional coregulator SNW/SKIP: the concealed tie of dissimilar pathways. Cell Mol. Life Sci. 2004;61:629–640. doi: 10.1007/s00018-003-3215-4. PubMed DOI PMC
Makarov E.M., Makarova O.V., Urlaub H., Gentzel M., Will C.L., Wilm M., Luhrmann R. Small nuclear ribonucleoprotein remodeling during catalytic activation of the spliceosome. Science. 2002;298:2205–2208. doi: 10.1126/science.1077783. PubMed DOI
Zhang C., Dowd D.R., Staal A., Gu C., Lian J.B., van Wijnen A.J., Stein G.S., MacDonald P.N. Nuclear coactivator-62 kDa/Ski-interacting protein is a nuclear matrix-associated coactivator that may couple vitamin D receptor-mediated transcription and RNA splicing. J. Biol. Chem. 2003;278:35325–35336. doi: 10.1074/jbc.M305191200. PubMed DOI
Bres V., Yoshida T., Pickle L., Jones K.A. SKIP interacts with c-Myc and Menin to promote HIV-1 Tat transactivation. Mol. Cell. 2009;36:75–87. doi: 10.1016/j.molcel.2009.08.015. PubMed DOI PMC
Williams C., Edvardsson K., Lewandowski S.A., Strom A., Gustafsson J.A. A genome-wide study of the repressive effects of estrogen receptor beta on estrogen receptor alpha signaling in breast cancer cells. Oncogene. 2008;27:1019–1032. doi: 10.1038/sj.onc.1210712. PubMed DOI
Livak K.J., Schmittgen T.D. Analysis of relative gene expression data using real-time quantitative PCR and the 2(-Delta Delta C(T)) Method. Methods. 2001;25:402–408. doi: 10.1006/meth.2001.1262. PubMed DOI
Ambrozkova M., Puta F., Fukova I., Skruzny M., Brabek J., Folk P. The fission yeast ortholog of the coregulator SKIP interacts with the small subunit of U2AF. Biochem. Biophys. Res. Commun. 2001;284:1148–1154. doi: 10.1006/bbrc.2001.5108. PubMed DOI
Hou X., Xie K., Yao J., Qi Z., Xiong L. A homolog of human ski-interacting protein in rice positively regulates cell viability and stress tolerance. Proc. Natl. Acad. Sci. U. S. A. 2009;106:6410–6415. doi: 10.1073/pnas.0901940106. PubMed DOI PMC
Mintz P.J., Patterson S.D., Neuwald A.F., Spahr C.S., Spector D.L. Purification and biochemical characterization of interchromatin granule clusters. EMBO J. 1999;18:4308–4320. doi: 10.1093/emboj/18.15.4308. PubMed DOI PMC
Kim Y.J., Noguchi S., Hayashi Y.K., Tsukahara T., Shimizu T., Arahata K. The product of an oculopharyngeal muscular dystrophy gene, poly(A)-binding protein 2, interacts with SKIP and stimulates muscle-specific gene expression. Hum. Mol. Genet. 2001;10:1129–1139. doi: 10.1093/hmg/10.11.1129. PubMed DOI
Kadener S., Cramer P., Nogues G., Cazalla D., de la M.M., Fededa J.P., Werbajh S.E., Srebrow A., Kornblihtt A.R. Antagonistic effects of T-Ag and VP16 reveal a role for RNA pol II elongation on alternative splicing. EMBO J. 2001;20:5759–5768. doi: 10.1093/emboj/20.20.5759. PubMed DOI PMC
Cmarko D., Verschure P.J., Martin T.E., Dahmus M.E., Krause S., Fu X.D., van Driel R., Fakan S. Ultrastructural analysis of transcription and splicing in the cell nucleus after bromo-UTP microinjection. Mol. Biol. Cell. 1999;10:211–223. PubMed PMC
Xie S.Q., Martin S., Guillot P.V., Bentley D.L., Pombo A. Splicing speckles are not reservoirs of RNA polymerase II, but contain an inactive form, phosphorylated on serine2 residues of the C-terminal domain. Mol. Biol. Cell. 2006;17:1723–1733. doi: 10.1091/mbc.E05-08-0726. PubMed DOI PMC
Yang Z., He N., Zhou Q. Brd4 recruits P-TEFb to chromosomes at late mitosis to promote G1 gene expression and cell cycle progression. Mol. Cell Biol. 2008;28:967–976. doi: 10.1128/MCB.01020-07. PubMed DOI PMC
Pacheco T.R., Moita L.F., Gomes A.Q., Hacohen N., Carmo-Fonseca M. RNA interference knockdown of hU2AF35 impairs cell cycle progression and modulates alternative splicing of Cdc25 transcripts. Mol. Biol. Cell. 2006;17:4187–4199. doi: 10.1091/mbc.E06-01-0036. PubMed DOI PMC
Neumann B., Walter T., Heriche J.K., Bulkescher J., Erfle H., Conrad C., Rogers P., Poser I., Held M., Liebel U., Cetin C., Sieckmann F., Pau G., Kabbe R., Wunsche A., Satagopam V., Schmitz M.H., Chapuis C., Gerlich D.W., Schneider R., Eils R., Huber W., Peters J.M., Hyman A.A., Durbin R., Pepperkok R., Ellenberg J. Phenotypic profiling of the human genome by time-lapse microscopy reveals cell division genes. Nature. 2010;464:721–727. doi: 10.1038/nature08869. PubMed DOI PMC
Kittler R., Putz G., Pelletier L., Poser I., Heninger A.K., Drechsel D., Fischer S., Konstantinova I., Habermann B., Grabner H., Yaspo M.L., Himmelbauer H., Korn B., Neugebauer K., Pisabarro M.T., Buchholz F. An endoribonuclease-prepared siRNA screen in human cells identifies genes essential for cell division. Nature. 2004;432:1036–1040. doi: 10.1038/nature03159. PubMed DOI
Gahura O., Abrhamova K., Skruzny M., Valentova A., Munzarova V., Folk P., Puta F. Prp45 affects Prp22 partition in spliceosomal complexes and splicing efficiency of non-consensus substrates. J. Cell Biochem. 2009;106:139–151. doi: 10.1002/jcb.21989. PubMed DOI
Ljungman M., Zhang F., Chen F., Rainbow A.J., McKay B.C. Inhibition of RNA polymerase II as a trigger for the p53 response. Oncogene. 1999;18:583–592. doi: 10.1038/sj.onc.1202356. PubMed DOI