Feedback-resistant acetohydroxy acid synthase increases valine production in Corynebacterium glutamicum
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
15640189
PubMed Central
PMC544200
DOI
10.1128/aem.71.1.207-213.2005
PII: 71/1/207
Knihovny.cz E-zdroje
- MeSH
- acetolaktátsynthasa antagonisté a inhibitory genetika metabolismus MeSH
- bakteriální proteiny genetika metabolismus MeSH
- Corynebacterium glutamicum enzymologie genetika růst a vývoj MeSH
- molekulární sekvence - údaje MeSH
- mutace MeSH
- mutageneze cílená MeSH
- operon MeSH
- plazmidy MeSH
- regulace genové exprese u bakterií * MeSH
- sekvence aminokyselin MeSH
- valin biosyntéza MeSH
- větvené aminokyseliny farmakologie MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- acetolaktátsynthasa MeSH
- bakteriální proteiny MeSH
- valin MeSH
- větvené aminokyseliny MeSH
Acetohydroxy acid synthase (AHAS), which catalyzes the key reactions in the biosynthesis pathways of branched-chain amino acids (valine, isoleucine, and leucine), is regulated by the end products of these pathways. The whole Corynebacterium glutamicum ilvBNC operon, coding for acetohydroxy acid synthase (ilvBN) and aceto hydroxy acid isomeroreductase (ilvC), was cloned in the newly constructed Escherichia coli-C. glutamicum shuttle vector pECKA (5.4 kb, Km(r)). By using site-directed mutagenesis, one to three amino acid alterations (mutations M8, M11, and M13) were introduced into the small (regulatory) AHAS subunit encoded by ilvN. The activity of AHAS and its inhibition by valine, isoleucine, and leucine were measured in strains carrying the ilvBNC operon with mutations on the plasmid or the ilvNM13 mutation within the chromosome. The enzyme containing the M13 mutation was feedback resistant to all three amino acids. Different combinations of branched-chain amino acids did not inhibit wild-type AHAS to a greater extent than was measured in the presence of 5 mM valine alone (about 57%). We infer from these results that there is a single binding (allosteric) site for all three amino acids in the enzyme molecule. The strains carrying the ilvNM13 mutation in the chromosome produced more valine than their wild-type counterparts. The plasmid-free C. glutamicum DeltailvA DeltapanB ilvNM13 strain formed 90 mM valine within 48 h of cultivation in minimal medium. The same strain harboring the plasmid pECKAilvBNC produced as much as 130 mM valine under the same conditions.
Zobrazit více v PubMed
Eggeling, I., C. Cordes, L. Eggeling, and H. Sahm. 1987. Regulation of acetohydroxy acid synthase in Corynebacterium glutamicum during fermentation of alfa-ketobutyrate to l-isoleucine. Appl. Microbiol. Biotechnol. 25:346-351.
Epelbaum, S., R. A. LaRossa, T. K. VanDyk, T. Elkayam, D. M. Chipman, and Z. Barak. 1998. Branched-chain amino acid biosynthesis in Salmonella typhimurium: a quantitative analysis. J. Bacteriol. 180:4056-4067. PubMed PMC
Hanahan, D. 1985. Techniques for transformation of E. coli, p. 109-135. In D. M. Glover (ed.), DNA cloning. A practical approach, vol. 1. IRL Press, Oxford, United Kingdom.
Horton, R. M. 1995. PCR-mediated recombination and mutagenesis. SOEing together tailor-made genes. Mol. Biotechnol. 3:93-99. PubMed
Inui, M., A. A. Vertes, M. Kobayashi, Y. Kurusu, and H. Yukawa. 1993. Cloning and sequence determination of the acetohydroxy acid synthase genes from Brevibacterium flavum MJ233 by using the polymerase chain reaction. DNA Sequence 3:303-310. PubMed
Ito, W., H. Ishiguro, and Y. Kurosawa. 1991. A general method for introducing a series of mutations into cloned DNA using the polymerase chain reaction. Gene 102:67-70. PubMed
Jäger, W., A. Schäfer, A. Pühler, G. Labes, and W. Wohlleben. 1992. Expression of the Bacillus subtilis sacB gene leads to sucrose sensitivity in the gram-positive bacterium Corynebacterium glutamicum but not in Streptomyces lividans. J. Bacteriol. 174:5462-5465. PubMed PMC
Keilhauer, C., L. Eggeling, and H. Sahm. 1993. Isoleucine synthesis in Corynebacterium glutamicum: molecular analysis of the ilvB-ilvN-ilvC operon. J. Bacteriol. 175:5595-5603. PubMed PMC
Kopecký, J., J. Janata, S. Pospíšil, J. Felsberg, and J. Spížek. 1999. Mutations in two distinct regions of acetolactate synthase regulatory subunit from Streptomyces cinnamonensis result in the lack of sensitivity to end-product inhibition. Biochem. Biophys. Res. Commun. 266:162-166. PubMed
Lange, C., D. Rittmann, V. F. Wendisch, M. Bott, and H. Sahm. 2003. Global expression profiling and physiological characterization of Corynebacterium glutamicum grown in the presence of l-valine. Appl. Environ. Microbiol. 69:2521-2532. PubMed PMC
Leyval, D., D. Uy, S. Delaunay, J. L. Goergen, and J. M. Engasser. 2003. Characterisation of the enzyme activities involved in the valine biosynthetic pathway in a valine-producing strain of Corynebacterium glutamicum. J. Biotechnol. 104:241-252. PubMed
Lindroth, P., and K. Mopper. 1979. High performance liquid chromatographic determination of subpicomole amounts of amino acids by precolumn fluorescence derivatization with o-phthalaldehyde. Anal. Chem. 51:1667-1674.
Mendel, S., T. Elkayam, C. Sella, V. Vinogradov, M. Vyazmensky, D. M. Chipman, and Z. Barak. 2001. Acetohydroxyacid synthase: a proposed structure for regulatory subunits supported by evidence from mutagenesis. J. Mol. Biol. 307:465-477. PubMed
Morbach, S., C. Junger, H. Sahm, and L. Eggeling. 2000. Attenuation control of ilvBNC in Corynebacterium glutamicum: evidence of leader peptide formation without the presence of a ribosome binding site. J. Biosci. Bioeng. 90:501-507. PubMed
Pátek, M., J. Hochmannová, and J. Nešvera. 1993. Production of threonine by Brevibacterium flavum containing threonine biosynthesis genes from Escherichia coli. Fol. Microbiol. 38:355-359. PubMed
Pospíšil, S., J. Kopecky, V. Přikrylová, and J. Spížek. 1999. Overproduction of 2-ketoisovalerate and monensin production by regulatory mutants of Streptomyces cinnamonensis resistant to 2-ketobutyrate and amino acids. FEMS Microbiol. Lett. 172:197-204.
Pridmore, R. D. 1987. New and versatile cloning vectors with kanamycin-resistance marker. Gene 56:309-312. PubMed
Radmacher, E., A. Vaitsikova, U. Burger, K. Krumbach, H. Sahm, and L. Eggeling. 2002. Linking central metabolism with increased pathway flux: l-valine accumulation by Corynebacterium glutamicum. Appl. Environ. Microbiol. 68:2246-2250. PubMed PMC
Reinscheid, D. J., W. Kronemeyer, L. Eggeling, B. J. Eikmanns, and H. Sahm. 1994. Stable expression of hom-1-thrB in Corynebacterium glutamicum and its effect on the carbon flux to threonine and related amino acids. Appl. Environ. Microbiol. 60:126-132. PubMed PMC
Sahm, H., and L. Eggeling. 1999. d-Pantothenate synthesis in Corynebacterium glutamicum and use of panBC and genes encoding l-valine synthesis for d-pantothenate overproduction. Appl. Environ. Microbiol. 65:1973-1979. PubMed PMC
Sambrook, J., and D. V. Russel. 2001. Molecular cloning: a laboratory manual, 3rd ed. Cold Spring Harbor Laboratory Press, Cold Spring Harbor, N.Y.
Santamaría, R., J. A. Gil, J. M. Mesas, and J. F. Martín. 1984. Characterization of endogenous plasmid and development of cloning vectors and a transformation system in Brevibacterium lactofementum. J. Gen. Microbiol. 130:2237-2246.
Schäfer, A., A. Tauch, W. Jäger, J. Kalinowski, G. Thierbach, and A. Pühler. 1994. Small mobilizable multi-purpose cloning vectors derived from the Escherichia coli plasmids pK18 and pK19: selection of defined deletions in the chromosome of Corynebacterium glutamicum. Gene 145:69-73. PubMed
Tsuchida, T., and H. Momose. 1975. Genetic changes of regulatory mechanisms occurred in leucine and valine producing mutants derived from Brevibacterium lactofermentum. Agric. Biol. Chem. 39:2193-2198.
Tsuchida, T., and H. Momose. 1986. Improvement of an l-leucine-producing mutant of Brevibacterium lactofermentum 2256 by genetically desensitizing it to α-acetohydroxy acid synthase. Appl. Environ. Microbiol. 51:1024-1027. PubMed PMC
Umbarger, H. E. 1996. Biosynthesis of the branched-chain amino acids, p. 442-457. In F. C. Neidhardt, R. Curtiss III, J. L. Ingraham, E. C. C. Lin, K. B. Low, B. Magasanik, W. S. Reznikoff, M. Riley, M. Schaechter, and H. E Umbarger (ed.), Escherichia coli and Salmonella: cellular and molecular biology, 2nd ed. ASM Press, Washington, D.C.
van der Rest, M. E., C. Lange, and D. Molenaar. 1999. A heat shock following electroporation induces highly efficient transformation of Corynebacterium glutamicum with xenogeneic plasmid DNA. Appl. Microbiol. Biotechnol. 52:541-545. PubMed
Vyazmensky, M., C. Sella, Z. Barak, and D. M. Chipman. 1996. Isolation and characterization of subunits of acetohydroxy acid synthase isozyme III and reconstitution of the holoenzyme. Biochemistry 35:10339-10346. PubMed
Wang, Q., and J. M. Calvo. 1993. Lrp, a global regulatory protein of Escherichia coli, binds co-operatively to multiple sites and activates transcription of ilvIH. J. Mol. Biol. 229:306-318. PubMed
Westerfeld, W. W. 1945. A colorimetric detection of blood acetoin. J. Biol. Chem. 161:495-502. PubMed
General and molecular microbiology and microbial genetics in the IM CAS