Air pollution and lymphocyte phenotype proportions in cord blood
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem, Research Support, U.S. Gov't, Non-P.H.S.
Grantová podpora
P01 ES011269
NIEHS NIH HHS - United States
PubMed
16203253
PubMed Central
PMC1281286
DOI
10.1289/ehp.7610
Knihovny.cz E-zdroje
- MeSH
- fetální krev cytologie MeSH
- imunofenotypizace MeSH
- kohortové studie MeSH
- lidé MeSH
- lymfocyty cytologie MeSH
- novorozenec MeSH
- polycyklické sloučeniny toxicita MeSH
- vystavení vlivu životního prostředí MeSH
- znečištění ovzduší * MeSH
- Check Tag
- lidé MeSH
- novorozenec MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Research Support, U.S. Gov't, Non-P.H.S. MeSH
- Geografické názvy
- Česká republika MeSH
- Názvy látek
- polycyklické sloučeniny MeSH
Effects of air pollution on morbidity and mortality may be mediated by alterations in immune competence. In this study we examined short-term associations of air pollution exposures with lymphocyte immunophenotypes in cord blood among 1,397 deliveries in two districts of the Czech Republic. We measured fine particulate matter < 2.5 microm in diameter (PM2.5) and 12 polycyclic aromatic hydrocarbons (PAHs) in 24-hr samples collected by versatile air pollution samplers. Cord blood samples were analyzed using a FACSort flow cytometer to determine phenotypes of CD3+ T-lymphocytes and their subsets CD4+ and CD8+, CD19+ B-lymphocytes, and natural killer cells. The mothers were interviewed regarding sociodemographic and lifestyle factors, and medical records were abstracted for obstetric, labor and delivery characteristics. During the period 1994 to 1998, the mean daily ambient concentration of PM2.5 was 24.8 microg/m3 and that of PAHs was 63.5 ng/m3. In multiple linear regression models adjusted for temperature, season, and other covariates, average PAH or PM2.5 levels during the 14 days before birth were associated with decreases in T-lymphocyte phenotype fractions (i.e., CD3+ CD4+, and CD8+), and a clear increase in the B-lymphocyte (CD19+) fraction. For a 100-ng/m3 increase in PAHs, which represented approximately two standard deviations, the percentage decrease was -3.3% [95% confidence interval (CI), -5.6 to -1.0%] for CD3+, -3.1% (95% CI, -4.9 to -1.3%) for CD4+, and -1.0% (95% CI, -1.8 to -0.2%) for CD8+ cells. The corresponding increase in the CD19+ cell proportion was 1.7% (95% CI, 0.4 to 3.0%). Associations were similar but slightly weaker for PM2.5. Ambient air pollution may influence the relative distribution of lymphocyte immunophenotypes of the fetus.
Zobrazit více v PubMed
Afoke AO, Eeg-Olofsson O, Hed J, Kjellman NI, Lindblom B, Ludvigsson J. Seasonal variation and sex differences of circulating macrophages, immunoglobulins and lymphocytes in healthy school children. Scand J Immunol. 1993;37:209–215. PubMed
Binková B, Lewtas J, Míšková I, Leníček J, Šrám R. DNA adducts and personal air monitoring of carcinogenic polycyclic aromatic hydrocarbons in an environmentally exposed population. Carcinogenesis. 1995;16:1037–1046. PubMed
Braun-Fahrländer C, Vuille J, Sennhauser F, Neu U, Kunzle T, Grize L, et al. Respiratory health and long-term exposure to air pollutants in Swiss schoolchildren. SCARPOL Team. Swiss Study on Childhood Allergy and Respiratory Symptoms with Respect to Air Pollution, Climate and Pollen. Am J Respir Crit Care Med. 1997;155:1042–1049. PubMed
Burchiel SW, Lauer FT, McDonald JD, Reed MD. Systemic immunotoxicity in AJ mice following 6-month whole body inhalation exposure to diesel exhaust. Toxicol Appl Pharmacol. 2004;196:337–345. PubMed
Cole SR, Hernan MA. Int J Epidemiol. 2002;31:163–165. PubMed
Courage CM. 2002. Environmental tobacco smoke. In: Children’s Health and Environment: A Review of Evidence. A Joint Report from the European Environment Agency and the WHO Regional Office for Europe (Tamburlini G, von Ehrenstein OS, Bertollini R, eds). Copenhagen:European Environment Agency and the World Health Organization Regional Office for Europe, 79–98.
D’Arena G, Musto P, Cascavilla N, Di Giorgio G, Fusilli S, Zendoli F, et al. Flow cytometric characterization of human umbilical cord blood lymphocytes: immunophenotypic features. Haematologica. 1998;83:197–203. PubMed
Dejmek J, Selevan S, Beneš I, Solansky I, Šrám R. Fetal growth and maternal exposure to particulate matter during pregnancy. Environ Health Perspect. 1999;107:475–480. PubMed PMC
Dejmek J, Solansky I, Benes I, Lenicek J, Šrám RJ. The impact of polycyclic aromatic hydrocarbons and fine particles on pregnancy outcome. Environ Health Perspect. 2000;108:1159–1164. PubMed PMC
Devereux G, Barker RN, Seaton A. Antenatal determinants of neonatal immune responses to allergens. Clin Exp Allergy. 2002;32:43–50. PubMed
Diaz-Sanchez D, Proietti L, Polosa R. Diesel fumes and the rising prevalence of atopy: an urban legend? Curr Allergy Asthma Rep. 2003;3:146–152. PubMed
DiFranza JR, Aligne CA, Weitzman M. Prenatal and post-natal environmental tobacco smoke exposure and children’s health. Pediatrics. 2004;113:1007–1015. PubMed
Garcia LA, Garcia GA, Martinez PD, Langle AE, Fernandez PS, Vazquez TL. Reference values of T-lymphocyte subsets in umbilical cord blood. Rev Alerg Mex. 1995;42:60–63. PubMed
Glinianaia SV, Rankin J, Bell R, Pless-Mulloli T, Howel D. Particulate air pollution and fetal health: a systematic review of the epidemiologic evidence. Epidemiology. 2004;15:36–45. PubMed
Harris D, Schumacher M, Rychlik S, Booth A, Acevedo A, Rubinstein P, et al. Collection, separation and cryop-reservation of umbilical cord blood for use in transplantation. Bone Marrow Transplant. 1994;13:135–143. PubMed
Hazenkamp-von Arx ME, Gotschi Fellmann T, Oglesby L, Ackermann-Liebrich U, Gislason T, Heinrich J, et al. PM2.5 assessment in 21 European study centers of ECRHS II: method and first winter results. J Air Waste Manag Assoc. 2003;53:617–628. PubMed
Hertz-Picciotto I, Dostal M, Dejmek J, Selevan SG, Wegienka G, Šrám RJ. Air pollution and distributions of lymphocyte immunophenotypes in cord and maternal blood at delivery. Epidemiology. 2002;13:172–183. PubMed
Jedrychowski W, Bendkowska I, Flak E, Penar A, Jacek R, Kaim I, et al. Estimated risk for altered fetal growth resulting from exposure to fine particles during pregnancy: an epidemiologic prospective cohort study in Poland. Environ Health Perspect. 2004;112:1398–1402. PubMed PMC
Leonardi GS, Houthuijs D, Steerenberg PA, Fletcher T, Armstrong B, Antova T, et al. Immune biomarkers in relation to exposure to particulate matter: a cross-sectional survey in 17 cities of Central Europe. Inhal Toxicol. 2000;12(suppl 4):1–14. PubMed
Levi FA, Canon C, Touitou Y, Reinberg A, Mathe G. Seasonal modulation of the circadian time structure of circulating T and natural killer lymphocyte subsets from healthy subjects. J Clin Invest. 1988;81:407–413. PubMed PMC
Li N, Sioutas C, Cho A, Schmitz D, Misra C, Sempf J, et al. Ultrafine particulate pollutants induce oxidative stress and mitochondrial damage. Environ Health Perspect. 2003;111:455–460. PubMed PMC
Little RJA, Rubin DB. 2002. Statistical Analysis with Missing Data. 2nd ed. New York:Wiley Interscience, 248–251.
Naumova YY, Eisenreich SJ, Turpin BJ, Weisel CP, Morandi MT, Colome SD, et al. Polycyclic aromatic hydrocarbons in the indoor and outdoor air of three cities in the U.S. Environ Sci Technol. 2002;36:2552–2559. PubMed
Nel AE, Diaz-Sanchez D, Li N. The role of particulate pollutants in pulmonary inflammation and asthma: evidence for the involvement of organic chemicals and oxidative stress. Curr Opin Pulm Med. 2001;7:20–26. PubMed
Noakes PS, Holt PG, Prescott SL. Maternal smoking in pregnancy alters neonatal cytokine responses. Allergy. 2003;58:1053–1058. PubMed
Perera F, Hemminki K, Jedrychowski W, Whyatt R, Campbell U, Hsu Y, et al. In utero DNA damage from environmental pollution is associated with somatic gene mutation in newborns. Cancer Epidemiol Biomarkers Prev. 2002;11:1134–1137. PubMed
Perera FP, Rauh V, Tsai WY, Kinney P, Camann D, Barr D, et al. Effects of transplacental exposure to environmental pollutants on birth outcomes in a multiethnic population. Environ Health Perspect. 2003;111:201–205. PubMed PMC
Perera FP, Tang D, Yi-Hsuan T, Cru LA, Borjas M, Bernert T, et al. Antimony: biomarkers in maternal and newborn blood indicate heightened fetal susceptibility to procarcinogenic DNA damage. Environ Health Perspect. 2004;112:1133–1136. PubMed PMC
Petry T, Schmid P, Schlatter CH. The use of toxic equivalency factors in assessing occupational and airborne mixtures of polycyclic aromatic hydrocarbons (PAHs) Chemosphere. 1996;32:639–648. PubMed
Pinto JP, Lefohn AS, Shadwick DS. Spatial variability of PM2.5 in urban areas in the United States. J Air Waste Manag Assoc. 2004;54:440–449. PubMed
Pinto JP, Stevens RK, Willis RD, Kellogg R, Mamane Y, Nowak J, et al. Czech air quality monitoring and receptor modelling study. Environ Sci Technol. 1998;32:843–854.
Pittard W, Schleich D, Geddes K, Sorensen R. Newborn lymphocyte subpopulations: the influence of labor. Am J Obstet Gynecol. 1989;160:151–154. PubMed
Santagostino A, Garbaccio G, Pistorio A, Bolis V, Camisasca G, Pagliaro P, et al. An Italian national multicenter study for the definition of reference ranges for normal values of peripheral blood lymphocyte subsets in healthy adults. Haematologica. 1999;84:499–504. PubMed
Schaberg T, Theilacker C, Nitschke OT, Lode H. Lymphocyte subsets in peripheral blood and smoking habits. Lung. 1997;75:387–394. PubMed
Schultz C, Reiss I, Bucsky P, Gopel W, Gembruch U, Ziesenitz S, et al. Maturational changes of lymphocyte surface antigens in human blood: comparison between fetuses, neonates and adults. Biol Neonate. 2000;78(2):77–82. PubMed
Shumway RH, Stoffer DS. 2000. Time Series Analysis and Its Applications. New York:Springer-Verlag, 329–333.
Siwinska E, Mielzynska D, Bubak A, Smolik E. The effect of coal stoves and environmental tobacco smoke on the level of urinary 1-hydroxypyrene. Mutat Res. 1999;445:147–153. PubMed
Skachkova MA, Skachkov MV, Smolyagin AI, Boev VM, Vereshchagin NN, Mikhailova IV, et al. Immune and interferon status in schoolchildren living in cities with different anthropogenic load. Bull Exp Biol Med. 2001;131:371–373. PubMed
Somers CM, McCarry BE, Malek F, Quinn JS. Reduction of particulate air pollution lowers the risk of heritable mutations in mice. Science. 2004;304:1008–1010. PubMed
Šrám RJ, Binková B, Rössner P, Rubeš J, Topinka J, Dejmek J. Adverse reproductive outcomes from exposure to environmental mutagens. Mutat Res. 1999;428:203–215. PubMed
Tollerud DJ, Clark JW, Brown LM, Neuland CY, Mann DL, Pankiw-Trost LK, et al. The effects of cigarette smoking on T cell subsets. A population-based survey of healthy Caucasians. Am Rev Respir Dis. 1989;139:1446–1451. PubMed
van Eeden SF, Hogg JC. Systemic inflammatory response induced by particulate matter air pollution: the importance of bone-marrow stimulation. J Toxicol Environ Health A. 2002;65:1597–1613. PubMed
Wang X, Ding H, Ryan L, Xu X. Association between air pollution and low birthweight: a community-based study. Environ Health Perspect. 1997;105:514–520. PubMed PMC
Wilhelm M, Ritz B. Residential proximity to traffic and adverse birth outcomes in Los Angeles County, California, 1994–1996. Environ Health Perspect. 2003;111:207–216. PubMed PMC
Zhao Y, Dai ZP, Lv P, Gao XM. Phenotypic and functional analysis of human T lymphocytes in early second- and third-trimester fetuses. Clin Exp Immunol. 2002;129:302–308. PubMed PMC
Early childhood lower respiratory illness and air pollution