Progressive reparative gliosis in aged hosts and interferences with neural grafts in an animal model of Huntington's disease
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
PubMed
16773446
PubMed Central
PMC11520609
DOI
10.1007/s10571-006-9051-y
Knihovny.cz E-zdroje
- MeSH
- bazální ganglia embryologie patologie transplantace MeSH
- glióza patologie MeSH
- Huntingtonova nemoc chemicky indukované patologie terapie MeSH
- krysa rodu Rattus MeSH
- modely nemocí na zvířatech MeSH
- potkani Wistar MeSH
- progrese nemoci MeSH
- transplantace fetální tkáně MeSH
- transplantace mozkové tkáně patologie MeSH
- transplantace MeSH
- věkové faktory MeSH
- zvířata MeSH
- Check Tag
- krysa rodu Rattus MeSH
- mužské pohlaví MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
1. Neural transplantation in Huntington's diseased patients is currently the only approach in the treatment of this neurodegenerative disorder. The clinical trial, unfortunately, includes only a small number of patients until now, since many important questions have not been answered yet. One of them is only mild to moderate improvement of the state in most of grafted patients. 2. We examined the morphological correlates in the response to intrastriatal grafting of fragments of foetal rat ventral mesencephalic tissue 1 month after transplantation in male Wistar rats within varying durations (from 2 to 38 weeks) of experimentally induced neurodegenerative process of the striatum (used as a model of Huntington's disease). Our goal was to determine the impact of advanced striatal damage and gliosis on the graft viability and host-graft integration. 3. The findings can be summarized as follows: The progressive reactive gliosis, which is not able to compensate continual reduction of the grey matter leading to an extensive atrophy of the striatum in a long-term lesions, results in formation of the compact glial network. This tissue cannot be considered the suitable terrain for successful graft development and formation of host-graft interconnections. 4. The progression of irreversible morphological changes in long-lasting neurodegenerative process within the striatum can be supposed one of the important factors, which may decrease our prospect of distinct improvement after neural grafting in patients in advanced stage of Huntington's disease, who still remain the leading group in clinical trials.
Zobrazit více v PubMed
Bachoud-Lévi, A. C., Bourdet, C., Brugieres, P., Nguyen, J. P., Grandmougin, T., Haddad, B., Jeny, R., Bartolomeo, P., Boisse, M. F., Barba, G. D., Degos, J. D., Ergis, A. M., Lefaucheur, J. P., Lisovoski, F., Pailhous, E., Remy, P., Palfi, S., Defer, G. L., Césaro, P., Hantraye, P., and Peschanski, M. (2000). Safety and tolerability assessment of intrastriatal neural allografts in five patients with Huntington’s disease. Exp. Neurol.161:194–202. PubMed
Beal, M. F., Kowall, N. W., Ellison, D. W., Mazurek, M. F., Schwartz, K. J., and Martin, J. B. (1986). Replication of the neurochemical characteristics of Huntington's disease by quinolinic acid. Nature321:168–171. PubMed
Björklund, H., Olson, L., Dahl, D., and Schwarcz, R. (1986). Short- and long-term consequences of intracranial injections of the excitotoxin, quinolinic acid, as evidenced by GFA immunohistochemistry of astrocytes. Brain Res.371:267–277. PubMed
Brasted, P. J., Robbins, T. W., and Dunnett, S. B. (2000). Behavioral recovery following transplantation into a rat model of Huntington's disease requires both anatomical connectivity and extensive postoperative training. Proc. Natl. Acad. Sci. USA114:431–436. PubMed
Cheng, H. W., Jiang, T., Brown, S. A., Pasinetti, G. M., Finch, C. E., and McNeil, T. H. (1994). Response of striatal astrocytes to neuronal deafferentation: an immunocytochemical and ultrastructural study. Neuroscience62:425–439. PubMed
Collier, T. J., Sortwell, C. E., and Daley, B. F. (1999). Diminished viability, growth, and behavioral efficacy of fetal dopamine neuron grafts in aging rats with long-term dopamine depletion: an argument for neurotrophic supplementation. J. Neurosci.19(13):5563–5573. PubMed PMC
Coyle, J. T., and Schwarcz, R. (1976). Lesion of striatal neurones with kainic acid provides a model for Huntington's chorea. Nature263:244–246. PubMed
DiFiglia, M., Schiff, L., and Deckel, A. W. (1988). Neuronal organization of fetal striatal grafts in kainate- and sham-lesioned rat caudate nucleus: light- and electron-microscopic observations. J. Neurosci.8:1112–1130. PubMed PMC
Dunnett, S. B., and Björklund, A. (1992). Staging and dissection of rat embryos. In Dunnett, S. B., and Björklund, A. (eds.) Neural Transplantation: A Practical Approach, Oxford University Press, Oxford, pp. 1–19.
Dusart, I., Marty, S., and Peschanski, M. (1991). Glial changes following an excitotoxic lesion in the CNS-II. Astrocyt. Neurosci.45:541–549. PubMed
Ferrante, R. J., Kowall, N. W., Cipolloni, P. B., Storey, E., and Beal, M. F. (1993). Excitotoxin lesions in primates as a model for Huntington's disease: histopathologic and neurochemical characterization. Exp. Neurol.119:46–71. PubMed
Freed, C. R., Greene, P. E., Breeze, R. E., Tsai, W. Y., DuMouchel, W., Kao, R., Dillon, S., Winfield, H., Culver, S., Trojanowski, J. Q., Eidelberg, D., and Fahn, S. (2001). Transplantation of embryonic dopamine neurons for severe Parkinson's disease. N. Engl. J. Med.344(10):710–719. PubMed
Gates, M. A., Laywell, E. D., Fillmore, H., and Steindler, D. A. (1996). Astrocytes and extracellular matrix following intracerebral transplantation of embryonic ventral mesencephalon or lateral ganglionic eminence. Neuroscience74(2):579–597. PubMed
Groves, M., Vonsattel, J. P., Mazzoni, P., and Marder, K. (2003). Huntington's disease. Sci. Aging Knowl. Environ.43:1–14. PubMed
Isacson, O., Brundin, P., Gage, F. H., and Björklund, A. (1985). Neural grafting in a rat model of Huntington's disease: Progressive neurochemical changes after neostriatal ibotenate lesions and striatal tissue grafting. Neuroscience16:799–817. PubMed
Isacson, O., Fischer, W., Wictorin, K., Dawbarn, D., and Björklund, A. (1987). Astroglial response in the excitotoxically lesioned neostriatum and its projection areas in the rat. Neuroscience20:1043–1056. PubMed
Isacson, O., Hantraye, P., Riche, D., Schumacher, J. M., and Mazière, M. (1991). The relationship between symptoms and functional anatomy in the chronic neurodegenerative diseases: From pharmacological to biological replacement therapy in Huntington's disease. In Lindvall, O., Björklund, A., and Widner, H. (eds.) Intracerebral Transplantation in Movement Disorders, Elsevier, Amsterdam, pp. 245–258.
Jabs, R., Bekar, L. K., and Walz, W. (1998). Reactive astrogliosis in the injured and postischemic brain. In Walz, W. (ed.) Cerebral Ischemia: Molecular and Cellular Pathophysiology, Humana Press Inc., Totowa, pp. 233–249.
Kimelberg, H. K. (2004). The problem of astrocyte identity. Neurochem. Int.45:191–202. PubMed
Kopyov, O. V., Jacques, S., Lieberman, A., Duma, C. M., and Eagle, K. S. (1998). Safety of intrastriatal neurotransplantation for Huntington's disease patients. Exp. Neurol.149:97–108. PubMed
Leegwater-Kim, J., and Cha, J. H. (2004). The paradigm of Huntington's disease: Therapeutic opportunities in neurodegeneration. NeuroRx1(1):128–138. PubMed PMC
Liu, F. Ch., Graybiel, A. M., Dunnett, S. B., and Banghman, R. W. (1990). Intrastriatal grafts derived from fetal striatal primordia: II. Reconstruction of cholinergic and dopaminergic systems. J. Comp. Neurol.295:1–14. PubMed
Ludwin, S. K. (1985). Reaction of oligodendrocytes and astrocytes to trauma and implantation. A combined autoradiographic and immunohistochemical study. Lab. Invest.52:20–30. PubMed
Madrazo, I., Franco-Bourland, R. E., Castrejon, H., Cuevas, C., and Ostrosky-Solis, F. (1995). Fetal striatal homotransplantation for Huntington's disease: first two case reports. Neurol. Res.17:312–315. PubMed
Mathewson, A. J., and Berry, M. (1985). Observations on the astrocyte response to a cerebral stab wound in adult rats. Brain Res.18:61–69. PubMed
Mazurová, Y., Valoušková, V., Österreicher, J. (2002). The reaction of subependymal layer of the lateral brain ventricles to the striatal ibotenic acid lesion in long-term study. Acta Histochem.104(4):375–379. PubMed
Murabe, Y., Ibata, Y., and Sano, Y. (1981). Morphological studies on neuroglia. II. Response of glial cells to kainic acid-induced lesions. Cell Tissue Res.216:569–580. PubMed
Ogawa, M., Araki, M., Nagatsu, I., and Yoshida, M. (1989). Astroglial cell alteration caused by neurotoxins: immunohistochemical observations with antibodies to glial fibrillary acidic protein, laminin, and tyrosine hydroxylase. Exp. Neurol.106:187–196. PubMed
Peschanski, M., Bachoud-Lévi, A. C., and Hantraye, P. (2004). Integrating fetal neural transplants into a therapeutic strategy: the example of Huntington's disease. Brain127:1219–1228. PubMed
Pritzel, M., Isacson, O., Brundin, P., Wiklund, L., and Björklund, A. (1986). Afferent and efferent connections of striatal grafts implanted into the ibotenic acid-lesioned neostriatum in adult rats. Exp. Brain Res.65:112–126. PubMed
Roberts, R. C., and DiFiglia, M. (1989). Short- and long-term survival of large neurons in the excitotoxic lesioned rat caudate nucleus: a light and electron microscopic study. Synapse3:363–371. PubMed
Rosser, A. E., and Dunnett, S. B. (2003). Neural Transplantation in patients with Huntington's disease. CNS Drugs17:853–867. PubMed
Schiffer, D., Giordana, M. T., Cavalla, P., Vigliani, M. C., and Attanasio, A. (1993). Immunohistochemistry of glial reaction after injury in the rat: double stainings and markers of cell proliferation. Int.. J. Dev. Neurosci.11:269–280. PubMed
Schwarcz, R., Hökfeld, T., Fuxe, K., Jonsson, G., Goldstein, M., and Terenius, L. (1979). Ibotenic acid-induced neuronal degeneration: a morphological and neurochemical study. Exp. Brain Res.37:199–216. PubMed
Sortwell, C. E., Camargo, M. D., Pitzer, M. R., Gvawali, S., and Collier, T. J. (2001). Diminished survival of mesencephalic dopamine neurons grafted into aged hosts occurs during the immediate postgrafting interval. Exp. Neurol.169(1):23–29. PubMed
Šramka, M., Rattaj, M., Molina, H., Vojtassak, J., Belan, V., and Ružický, E. (1992). Stereotactic technique and pathophysiological mechanisms of neurotransplantation in Huntington's chorea. Stereotact. Funct. Neurosurg.58:79–83. PubMed
Takamiya, Y., Kohsaka, S., Toya, S., Otani, M., and Tsukada, Y. (1988). Immunohistochemical studies on the proliferation of reactive astrocytes and the expression of cytoskeletal proteins following brain injury in rats. Brain Res.466:201–210. PubMed
Teismann, P., Tieu, K., Cohen, O., Choi, D. K., Wu du, C., Marks, D., Vila, M., Jackson-Lewis, V., and Przedborski, S. (2003). Pathogenic role of glial cells in Parkinson's disease. Mov. Disord.18:121–129. PubMed
Watts, C., and Dunnett, S. B. (1998). Effects of severity of host striatal damage on the morphological development of intrastriatal transplants in a rodent model of Huntington's disease: implications for timing of surgical intervention. J. Neurosurg.89(2):267–274. PubMed
Wictorin, K. (1992). Anatomy and connectivity of intrastriatal striatal transplants. Prog. Neurobiol.38:611–639. PubMed