Ergosterol treatment leads to the expression of a specific set of defence-related genes in tobacco
Jazyk angličtina Země Nizozemsko Médium print-electronic
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- cholesterol farmakologie MeSH
- DNA primery MeSH
- DNA rostlinná genetika MeSH
- ergosterol farmakologie MeSH
- genetická transkripce účinky léků MeSH
- regulace genové exprese u rostlin účinky léků MeSH
- RNA rostlin genetika MeSH
- rostlinné proteiny genetika MeSH
- sekvence nukleotidů MeSH
- tabák účinky léků genetika MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- cholesterol MeSH
- DNA primery MeSH
- DNA rostlinná MeSH
- ergosterol MeSH
- RNA rostlin MeSH
- rostlinné proteiny MeSH
Ergosterol is the main sterol of most fungi. Production of reactive oxygen species after the treatment of tobacco and tomato cells by nano-molar concentrations of ergosterol was previously observed as well as the activation of some stress activated mitogen-activated protein kinases on alfalfa cells. In this paper, the expression of some defence-related genes after the ergosterol treatment of tobacco Nicotiana tabacum plants is reported. The gene expression of pathogenesis related proteins of families PR1, PR3, PR5 and proteinase inhibitors of class I and II together with enzymes participating in the defence response, such as phenylalanine-ammonia lyase and sesquiterpene cyclase, were monitored by RT-qPCR. In addition, the concentrations of salicylic acid, an important signalling molecule, increased in time due to the enzyme activation. On the other hand, ergosterol did not provoke tissue necrosis and the possible cross-talk between the signalling pathways of salicylate and jasmonate was observed. Collected data shows that ergosterol is able to activate the expression of a number of defence genes and could increase resistance against pathogens.
Zobrazit více v PubMed
J Biol Chem. 2000 Nov 24;275(47):36734-40 PubMed
Plant Physiol. 1995 Feb;107(2):485-490 PubMed
Plant Physiol. 1995 Nov;109(3):1107-1114 PubMed
Plant Physiol. 1996 Feb;110(2):365-376 PubMed
Mol Plant Microbe Interact. 2003 May;16(5):456-64 PubMed
Plant Physiol. 1996 Dec;112(4):1617-1624 PubMed
Curr Opin Plant Biol. 2001 Oct;4(5):392-400 PubMed
Plant J. 2003 Mar;33(5):887-98 PubMed
Biochim Biophys Acta. 2000 Jul 24;1492(2-3):509-12 PubMed
Proc Natl Acad Sci U S A. 2000 Aug 1;97(16):8849-55 PubMed
Plant Physiol. 1995 Aug;108(4):1741-1746 PubMed
Angew Chem Int Ed Engl. 2000 May 15;39(10):1860-1862 PubMed
Plant Physiol. 2005 Jul;138(3):1481-90 PubMed
Plant Mol Biol. 1993 Mar;21(6):985-92 PubMed
Proc Natl Acad Sci U S A. 1990 Jan;87(1):98-102 PubMed
Proc Natl Acad Sci U S A. 1998 Dec 8;95(25):15107-11 PubMed
Plant Physiol Biochem. 2004 May;42(5):429-35 PubMed
Arch Biochem Biophys. 2000 Sep 15;381(2):285-94 PubMed
Biochim Biophys Acta. 2000 Mar 7;1477(1-2):112-21 PubMed
Yakugaku Zasshi. 2004 Dec;124(12):909-35 PubMed
Biochim Biophys Acta. 2000 Jun 21;1492(1):211-5 PubMed
Ann Bot. 2002 May;89(5):503-12 PubMed
Plant Cell. 1995 Jul;7(7):1085-1097 PubMed
J Biol Chem. 2001 Sep 7;276(36):33540-6 PubMed
Plant Mol Biol. 1995 Dec;29(5):959-68 PubMed
Tanpakushitsu Kakusan Koso. 1998 Dec;43(16 Suppl):2531-9 PubMed
Plant Physiol. 1993 Mar;101(3):857-863 PubMed
Plant Mol Biol. 2003 Jan;51(1):109-18 PubMed
C R Biol. 2003 Apr;326(4):363-70 PubMed
Folia Microbiol (Praha). 2005;50(2):128-32 PubMed
Plant Cell. 1996 Oct;8(10):1809-1819 PubMed