Piecewise-linear neural networks and their relationship to rule extraction from data
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu srovnávací studie, časopisecké články, práce podpořená grantem
- MeSH
- algoritmy * MeSH
- ekologie MeSH
- fuzzy logika MeSH
- interpretace statistických dat * MeSH
- lidé MeSH
- lineární modely * MeSH
- neuronové sítě * MeSH
- rozpoznávání automatizované metody MeSH
- umělá inteligence MeSH
- zvířata MeSH
- Check Tag
- lidé MeSH
- zvířata MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- srovnávací studie MeSH
This article addresses the topic of extracting logical rules from data by means of artificial neural networks. The approach based on piecewise linear neural networks is revisited, which has already been used for the extraction of Boolean rules in the past, and it is shown that this approach can be important also for the extraction of fuzzy rules. Two important theoretical properties of piecewise-linear neural networks are proved, allowing an elaboration of the basic ideas of the approach into several variants of an algorithm for the extraction of Boolean rules. That algorithm has already been used in two real-world applications. Finally, a connection to the extraction of rules of the Łukasiewicz logic is established, relying on recent results about rational McNaughton functions. Based on one of the constructive proofs of the McNaughton theorem, an algorithm is formulated that in principle allows extracting a particular kind of formulas of the Łukasiewicz predicate logic from piecewise-linear neural networks trained with rational data.
Citace poskytuje Crossref.org