Inhibition of mammalian cathepsins by Plesiomonas shigelloides
Language English Country United States Media print
Document type Journal Article
PubMed
17176758
DOI
10.1007/bf02931582
Knihovny.cz E-resources
- MeSH
- Antigens, Bacterial MeSH
- Cysteine Endopeptidases MeSH
- Cysteine Proteinase Inhibitors metabolism pharmacology MeSH
- Cathepsin B antagonists & inhibitors MeSH
- Cathepsin L MeSH
- Cathepsins antagonists & inhibitors MeSH
- Humans MeSH
- Papain antagonists & inhibitors MeSH
- Periplasm metabolism MeSH
- Plesiomonas immunology metabolism pathogenicity MeSH
- Antigen Presentation MeSH
- Mammals MeSH
- Animals MeSH
- Check Tag
- Humans MeSH
- Animals MeSH
- Publication type
- Journal Article MeSH
- Names of Substances
- Antigens, Bacterial MeSH
- CTSL protein, human MeSH Browser
- Cysteine Endopeptidases MeSH
- Cysteine Proteinase Inhibitors MeSH
- Cathepsin B MeSH
- Cathepsin L MeSH
- Cathepsins MeSH
- Papain MeSH
To study molecular mechanisms underlying self-defense of the bacterial pathogen Plesiomonas shigelloides against host inflammatory and immune responses, we evaluated its interactions with mammalian papain-like cathepsins that are essential for host immunity. When grown under anaerobic, but not aerobic, conditions, P. shigelloides was shown to bind and inhibit papain, a model representative of the papain family of cysteine proteinases. This points to mammalian cathepsins as likely physiological targets of a novel cysteine-proteinase inhibitor expressed on bacterial cell surface. Both papain and mammalian cathepsins L and B were inhibited by periplasmic extracts of aerobically and anaerobically grown bacteria, the inhibitory activity being higher in the latter. Inhibition by both intact cells and periplasmic samples was rapid and efficient. The results suggest a possible defensive role of bacterial inhibitors of cathepsins during invasion of a mammalian host. The bacteria thus may modulate host protective responses through inhibiting cathepsins involved in antigen processing and presentation.
See more in PubMed
Biochem J. 1994 Apr 1;299 ( Pt 1):219-25 PubMed
Eur J Biochem. 1999 Aug;264(1):100-9 PubMed
FEBS Lett. 2003 May 8;542(1-3):12-6 PubMed
J Immunol. 2005 Feb 1;174(3):1205-12 PubMed
FEBS Lett. 2000 Dec 29;487(2):156-60 PubMed
J Immunol. 2005 Oct 15;175(8):5324-32 PubMed
Infect Immun. 2001 Apr;69(4):2260-9 PubMed
Gene. 1989 Jul 15;79(2):325-32 PubMed
Biochem J. 1992 Jan 1;281 ( Pt 1):49-55 PubMed
Science. 2000 Nov 24;290(5496):1594-7 PubMed
Adv Enzyme Regul. 2002;42:285-303 PubMed
Biochemistry. 2003 Sep 30;42(38):11326-33 PubMed
EMBO J. 2001 Sep 3;20(17):4629-33 PubMed
J Biol Chem. 1997 Jan 10;272(2):1197-202 PubMed
Infect Immun. 2003 May;71(5):2422-9 PubMed
J Leukoc Biol. 2004 May;75(5):844-55 PubMed
Curr Pharm Des. 2002;8(18):1623-37 PubMed
Biochem J. 1986 Nov 15;240(1):285-8 PubMed
Biol Chem. 1998 Feb;379(2):137-47 PubMed
Int J Parasitol. 2003 Sep 30;33(11):1291-302 PubMed
J Infect Dis. 1991 Nov;164(5):979-82 PubMed
J Exp Med. 2002 Nov 4;196(9):1263-9 PubMed
Immunol Rev. 2005 Oct;207:229-41 PubMed
Cell Mol Life Sci. 2002 Sep;59(9):1503-12 PubMed
Protein Sci. 2002 Aug;11(8):1971-7 PubMed
Folia Microbiol (Praha). 2004;49(5):543-8 PubMed
EMBO J. 1991 Sep;10(9):2321-30 PubMed
Biochim Biophys Acta. 2000 Mar 7;1477(1-2):98-111 PubMed
Biochem J. 1995 Oct 1;311 ( Pt 1):275-82 PubMed
Biochemistry. 1997 Oct 14;36(41):12608-15 PubMed
Biochem J. 2004 Apr 1;379(Pt 1):107-18 PubMed
J Exp Med. 1998 Jan 5;187(1):135-40 PubMed
Biochim Biophys Acta. 2000 Mar 7;1477(1-2):241-52 PubMed
J Biol Chem. 1996 Feb 23;271(8):4403-9 PubMed
Nat Rev Immunol. 2003 Jun;3(6):472-82 PubMed