Cytogenetic analyses in 81 patients with brain gliomas: correlation with clinical outcome and morphological data
Language English Country United States Media print-electronic
Document type Journal Article, Research Support, Non-U.S. Gov't
- MeSH
- Cytogenetic Analysis MeSH
- Adult MeSH
- Glioma genetics mortality pathology MeSH
- In Situ Hybridization, Fluorescence MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Brain Neoplasms genetics mortality pathology MeSH
- Prognosis MeSH
- Aged MeSH
- Check Tag
- Adult MeSH
- Middle Aged MeSH
- Humans MeSH
- Adolescent MeSH
- Male MeSH
- Aged MeSH
- Female MeSH
- Publication type
- Journal Article MeSH
- Research Support, Non-U.S. Gov't MeSH
Specific gene mutations, loss of heterozygosity, deletions and/or amplifications of entire chromosomal regions and gene silencing have been described in gliomas. 82 samples from 81 patients were investigated to detect the deletion of TP53, RB1, CDKN2A genes, deletion of 1p36 and 19q13.3 region, amplification of EGFR gene, trisomy of chromosome 7 and monosomy of chromosome 10 in glial cells. Dual-colour interphase fluorescence in situ hybridization (I-FISH) with locus-specific and/or chromosome enumeration DNA probes were used for cytogenetic analyses. In the study, molecular cytogenetic analyses were successfully performed in 74 patients (91.3%) and were uninformative in 7 only (8.7%). The cytogenetic analyses were correlated with morphological data and clinical outcome. I-FISH was the essential part of diagnostics. In comparison with the clinical data, the patients' age seems to be a factor more important for the overall survival, rather than cytogenetic findings in glial tumours. The combined deletion of 1p36 and 19q13.3 chromosomal regions predicts longer overall survival for patients with oligodendroglial tumours.
See more in PubMed
Clin Cancer Res. 2005 Apr 15;11(8):2991-7 PubMed
Genomics. 1998 Aug 1;51(3):359-63 PubMed
Nature. 1985 Jan 10-18;313(5998):144-7 PubMed
Genes Chromosomes Cancer. 2000 Sep;29(1):16-25 PubMed
Nature. 1998 Sep 10;395(6698):124-5 PubMed
Am J Pathol. 1994 Nov;145(5):1175-90 PubMed
J Clin Oncol. 2006 Jun 20;24(18):2689-90 PubMed
Cancer Res. 2001 Jan 15;61(2):679-86 PubMed
Cancer Res. 2000 Jan 15;60(2):417-24 PubMed
Cancer Genet Cytogenet. 1987 Nov;29(1):165-70 PubMed
N Engl J Med. 2000 Nov 9;343(19):1350-4 PubMed
Proc Natl Acad Sci U S A. 1994 Aug 2;91(16):7727-31 PubMed
Neuro Oncol. 2002 Oct;4(4):278-99 PubMed
Neurosurgery. 1996 Aug;39(2):235-50; discussion 250-2 PubMed
Int J Oncol. 2001 Sep;19(3):609-12 PubMed
Brain Pathol. 1996 Jul;6(3):217-23; discussion 23-4 PubMed
J Natl Cancer Inst. 1998 Oct 7;90(19):1473-9 PubMed
Lab Invest. 2000 Jan;80(1):65-72 PubMed
Brain Pathol. 2001 Apr;11(2):159-68 PubMed
J Neurooncol. 1997 Dec;35(3):193-209 PubMed
Cancer. 1997 Mar 15;79(6):1195-202 PubMed
Hum Pathol. 1996 Jun;27(6):586-9 PubMed
Cancer Res. 1996 Nov 15;56(22):5141-5 PubMed
Clin Cancer Res. 1997 Apr;3(4):523-30 PubMed
J Neuropathol Exp Neurol. 1996 Jul;55(7):822-31 PubMed
J Neuropathol Exp Neurol. 2001 Sep;60(9):917-20 PubMed
J Clin Oncol. 2006 Jun 20;24(18):2707-14 PubMed
Genes Chromosomes Cancer. 2004 Mar;39(3):205-16 PubMed
Cancer Res. 1996 Jan 1;56(1):150-3 PubMed
Cancer Res. 1994 Mar 1;54(5):1324-30 PubMed
Lancet. 2005 Sep 17-23;366(9490):985-90 PubMed
Eur J Cancer. 1992;28(1):11-7 PubMed
J Clin Oncol. 2006 Jun 20;24(18):2715-22 PubMed
Acta Neuropathol. 1997 Oct;94(4):303-9 PubMed
Folia Biol (Praha). 2006;52(3):71-8 PubMed
N Engl J Med. 2005 Mar 10;352(10 ):997-1003 PubMed
Cell. 1998 Mar 20;92 (6):725-34 PubMed
J Biol Chem. 1998 May 29;273(22):13375-8 PubMed
N Engl J Med. 2005 Mar 10;352(10 ):987-96 PubMed
Oncogene. 1994 Aug;9(8):2313-20 PubMed
Genomics. 2000 Feb 15;64(1):44-50 PubMed
J Neuropathol Exp Neurol. 1995 Jan;54(1):91-5 PubMed
Clin Cancer Res. 2002 Jan;8(1):196-201 PubMed
Cancer Res. 1994 Dec 15;54(24):6353-8 PubMed
J Neuropathol Exp Neurol. 1998 Jul;57(7):684-9 PubMed
Oncogene. 2002 Jun 6;21(25):3961-8 PubMed