Resequencing PNMT in European hypertensive and normotensive individuals: no common susceptibilily variants for hypertension and purifying selection on intron 1
Jazyk angličtina Země Anglie, Velká Británie Médium electronic
Typ dokumentu časopisecké články, práce podpořená grantem
Grantová podpora
Wellcome Trust - United Kingdom
070191/Z/03/Z
Wellcome Trust - United Kingdom
070255/Z/03/Z
Wellcome Trust - United Kingdom
PubMed
17645789
PubMed Central
PMC1947951
DOI
10.1186/1471-2350-8-47
PII: 1471-2350-8-47
Knihovny.cz E-zdroje
- MeSH
- fenylethanolamin-N-methyltransferasa genetika MeSH
- genetická predispozice k nemoci * MeSH
- genetická variace MeSH
- hypertenze genetika MeSH
- introny MeSH
- lidé středního věku MeSH
- lidé MeSH
- lokus kvantitativního znaku MeSH
- polymerázová řetězová reakce MeSH
- regulace genové exprese enzymů MeSH
- sekvenční analýza DNA MeSH
- studie případů a kontrol MeSH
- Check Tag
- lidé středního věku MeSH
- lidé MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Geografické názvy
- Česká republika MeSH
- Estonsko MeSH
- Názvy látek
- fenylethanolamin-N-methyltransferasa MeSH
BACKGROUND: Human linkage and animal QTL studies have indicated the contribution of genes on Chr17 into blood pressure regulation. One candidate gene is PNMT, coding for phenylethanolamine-N-methyltransferase, catalyzing the synthesis of epinephrine from norepinephrine. METHODS: Fine-scale variation of PNMT was screened by resequencing hypertensive (n = 50) and normotensive (n = 50) individuals from two European populations (Estonians and Czechs). The resulting polymorphism data were analyzed by statistical genetics methods using Genepop 3.4, PHASE 2.1 and DnaSP 4.0 software programs. In silico prediction of transcription factor binding sites for intron 1 was performed with MatInspector 2.2 software. RESULTS: PNMT was characterized by minimum variation and excess of rare SNPs in both normo- and hypertensive individuals. None of the SNPs showed significant differences in allelic frequencies among population samples, as well as between screened hypertensives and normotensives. In the joint case-control analysis of the Estonian and the Czech samples, hypertension patients had a significant excess of heterozygotes for two promoter region polymorphisms (SNP-184; SNP-390). The identified variation pattern of PNMT reflects the effect of purifying selection consistent with an important role of PNMT-synthesized epinephrine in the regulation of cardiovascular and metabolic functions, and as a CNS neurotransmitter. A striking feature is the lack of intronic variation. In silico analysis of PNMT intron 1 confirmed the presence of a human-specific putative Glucocorticoid Responsive Element (GRE), inserted by Alu-mediated transfer. Further analysis of intron 1 supported the possible existence of a full Glucocorticoid Responsive Unit (GRU) predicted to consist of multiple gene regulatory elements known to cooperate with GRE in driving transcription. The role of these elements in regulating PNMT expression patterns and thus determining the dynamics of the synthesis of epinephrine is still to be studied. CONCLUSION: We suggest that the differences in PNMT expression between normotensives and hypertensives are not determined by the polymorphisms in this gene, but rather by the interplay of gene expression regulators, which may vary among individuals. Understanding the determinants of PNMT expression may assist in developing PNMT inhibitors as potential novel therapeutics.
Zobrazit více v PubMed
Naber CK, Siffert W. Genetics of human arterial hypertension. Minerva Med. 2004;95:347–356. PubMed
Knight J, Munroe PB, Pembroke JC, Caulfield MJ. Human chromosome 17 in essential hypertension. Ann Hum Genet. 2003;67:193–206. doi: 10.1046/j.1469-1809.2003.t01-1-00002.x. PubMed DOI
Hilbert P, Lindpaintner K, Beckmann JS, Serikawa T, Soubrier F, Dubay C, Cartwright P, De Gouyon B, Julier C, Takahasi S. Chromosomal mapping of two genetic loci associated with blood-pressure regulation in hereditary hypertensive rats. Nature. 1991;353:521–529. doi: 10.1038/353521a0. PubMed DOI
Julier C, Delepine M, Keavney B, Terwilliger J, Davis S, Weeks DE, Bui T, Jeunemaitre X, Velho G, Froguel P, Ratcliffe P, Corvol P, Soubrier F, Lathrop GM. Genetic susceptibility for human familial essential hypertension in a region of homology with blood pressure linkage on rat chromosome 10. Hum Mol Genet. 1997;6:2077–2085. doi: 10.1093/hmg/6.12.2077. PubMed DOI
Wilson FH, Disse-Nicodeme S, Choate KA, Ishikawa K, Nelson-Williams C, Desitter I, Gunel M, Milford DV, Lipkin GW, Achard JM, Feely MP, Dussol B, Berland Y, Unwin RJ, Mayan H, Simon DB, Farfel Z, Jeunemaitre X, Lifton RP. Human hypertension caused by mutations in WNK kinases. Science. 2001;293:1107–1112. doi: 10.1126/science.1062844. PubMed DOI
Ziegler MG, Bao X, Kennedy BP, Joyner A, Enns R. Location, development, control, and function of extraadrenal phenylethanolamine N-methyltransferase. Ann N Y Acad Sci. 2002;971:76–82. PubMed
Lenders JW, Eisenhofer G, Mannelli M, Pacak K. Phaeochromocytoma. Lancet. 2005;366:665–675. doi: 10.1016/S0140-6736(05)67139-5. PubMed DOI
Saavedra J, Grobecker H, Axelford J. Adrenaline-forming enzyme in brainstem: elevation in genetics and experimental hypertension. Science. 1976;191:483–484. doi: 10.1126/science.1246633. PubMed DOI
Reja V, GA K, PP M. Catecholamine-Releated Gene Expression Correlates With Blood Pressure in SHR. Hypertension. 2002;40:342–347. doi: 10.1161/01.HYP.0000027684.06638.63. PubMed DOI
Koike G, Jacob HJ, Krieger JE, Szpirer C, Hoehe MR, Horiuchi M, Dzau VJ. Investigation of the phenylethanolamine N-methyltransferase gene as a candidate gene for hypertension. Hypertension. 1995;26:595–601. PubMed
Evinger MJ. Determinants of phenylethanolamine-N-methyltransferase expression. Adv Pharmacol. 1998;42:73–76. PubMed
Baetge EE, Behringer RR, Messing A, Brinster RL, Palmiter RD. Transgenic mice express the human phenylethanolamine N-methyltransferase gene in adrenal medulla and retina. Proc Natl Acad Sci USA. 1988;85:3648–3652. doi: 10.1073/pnas.85.10.3648. PubMed DOI PMC
Sasaoka T, Kaneda N, Kurosava Y, Fujita K, Nagatsu T. Structure of human phenylethanolamine N-methyltransferase gene: existence of two types of mRNA with different transcription initiation sites. Neurochem Int. 1989;15:555–565. doi: 10.1016/0197-0186(89)90176-9. PubMed DOI
Cui J, Zhou X, Chazaro I, DeStefano AL, Manolis AJ, Baldwin CT, Gavras H. Association of polymorphisms in the promoter region of the PNMT gene with essential hypertension in African Americans but not in whites. Am J Hypertens. 2003;16:859–863. doi: 10.1016/S0895-7061(03)01026-4. PubMed DOI
Janosikova B, Pavlikova M, Kocmanova D, Vitova A, Vesela K, Krupkova L, Kahleova R, Krijt J, Kraml P, Hyanek J, Zvarova J, Andel M, Kozich V. Genetic variants of homocysteine metabolizing enzymes and the risk of coronary artery disease. Mol Genet Metab. 2003;79:167–175. doi: 10.1016/S1096-7192(03)00079-9. PubMed DOI
National Centre for Biotechnology Information (NCBI)
Primer3 Software
National Centre for Biotechnology Information (NCBI BLAST)
Hallast P, Nagirnaja L, Margus T, Laan M. Segmental duplications and gene conversion: Human luteinizing hormone/chorionic gonadotropin beta gene cluster. Genome Res. 2005;15:1535–1546. doi: 10.1101/gr.4270505. PubMed DOI PMC
Genepop on the web
PHASE: software for haplotype reconstruction, and recombination rate estimation from population data
DnaSP: DNA Sequence Polymorphism software
Watterson GA. On the number of segregating sites in genetical models without recombination. Theor Popul Biol. 1975;7:256–276. doi: 10.1016/0040-5809(75)90020-9. PubMed DOI
Tajima F. Statistical method for testing the neutral mutation hypothesis by DNA polymorphism. Genetics. 1989;123:585–595. PubMed PMC
Genomatix company webpage
Cartharius K, Frech K, Grote K, Klocke B, Haltmeier M, Klingenhoff A, Frisch M, Bayerlein M, Werner T. MatInspector and beyond: promoter analysis based on transcription factor binding sites. Bioinformatics. 2005;21:2933–2942. doi: 10.1093/bioinformatics/bti473. PubMed DOI
BIOBASE: Biological Databases
Institute for System Biology, RepeatMasker Web Server
Crawford DC, Bhangale T, Li N, Hellenthal G, Rieder MJ, Nickerson DA, Stephens M. Evidence for substantial fine-scale variation in recombination rates across the human genome. Nat Genet. 2004;36:700–706. doi: 10.1038/ng1376. PubMed DOI
Schoneveld OJ, Gaemers IC, Lamers WH. Mechanisms of glucocorticoid signalling. Biochim Biophys Acta. 2004;1680:114–128. PubMed
Wong DL, Siddall BJ, Ebert SN, Bell RA, Her S. Phenylethanolamine N-methyltransferase gene expression: synergistic activation by Egr-1, AP-2 and the glucocorticoid receptor. Brain Res Mol Brain Res. 1998;61:154–161. doi: 10.1016/S0169-328X(98)00225-3. PubMed DOI
Her S, Bell RA, Bloom AK, Siddall BJ, Wong DL. Phenylethanolamine N-methyltransferase gene expression. Sp1 and MAZ potential for tissue-specific expression. J Biol Chem. 1999;274:8698–8707. doi: 10.1074/jbc.274.13.8698. PubMed DOI
Cheng PY, Kagawa N, Takahashi Y, Waterman MR. Three zinc finger nuclear proteins, Sp1, Sp3, and a ZBP-89 homologue, bind to the cyclic adenosine monophosphate-responsive sequence of the bovine adrenodoxin gene and regulate transcription. Biochemistry. 2000;39:4347–4357. doi: 10.1021/bi992298f. PubMed DOI
Almawi WY, Melemedjian OK. Negative regulation of nuclear factor-kappaB activation and function by glucocorticoids. J Mol Endocrinol. 2002;28:69–78. doi: 10.1677/jme.0.0280069. PubMed DOI
Pierreux CE, Rousseau GG, Lemaigre FP. Insulin inhibition of glucocorticoid-stimulated gene transcription: requirement for an insulin response element? Mol Cell Endocrinol. 1999;147:1–5. doi: 10.1016/S0303-7207(98)00238-X. PubMed DOI
Reeves R, Beckerbauer L. HMGI/Y proteins: flexible regulators of transcription and chromatin structure. Biochim Biophys Acta. 2001;1519:13–29. PubMed
Foti D, Chiefari E, Fedele M, Iuliano R, Brunetti L, Paonessa F, Manfioletti G, Barbetti F, Brunetti A, Croce CM, Fusco A, Brunetti A. Lack of the architectural factor HMGA1 causes insulin resistance and diabetes in humans and mice. Nat Med. 2005;11:765–773. doi: 10.1038/nm1254. PubMed DOI
Tseng YT, Stabila JP, Nguyen TT, McGonnigal BG, Waschek JA, Padbury JF. A novel glucocorticoid regulatory unit mediates the hormone responsiveness of the beta1-adrenergic receptor gene. Mol Cell Endocrinol. 2001;181:165–178. doi: 10.1016/S0303-7207(01)00490-7. PubMed DOI
Schoneveld OJ, Gaemers IC, Hoogenkamp M, Lamers WH. The role of proximal-enhancer elements in the glucocorticoid regulation of carbamoylphosphate synthetase gene transcription from the upstream response unit. Biochimie. 2005;87:1033–1040. doi: 10.1016/j.biochi.2005.02.015. PubMed DOI
Gruber CJ, Gruber DM, Gruber IM, Wieser F, Huber JC. Anatomy of the estrogen response element. Trends Endocrinol Metab. 2004;15:73–78. doi: 10.1016/j.tem.2004.01.008. PubMed DOI
Ueda HR, Hayashi S, Chen W, Sano M, Machida M, Shigeyoshi Y, Iino M, Hashimoto S. System-level identification of transcriptional circuits underlying mammalian circadian clocks. Nat Genet. 2005;37:187–192. doi: 10.1038/ng1504. PubMed DOI
Cowell IG. E4BP4/NFIL3, a PAR-related bZIP factor with many roles. Bioessays. 2002;24:1023–1029. doi: 10.1002/bies.10176. PubMed DOI
Hansen AM, Garde AH, Skovgaard LT, Christensen JM. Seasonal and biological variation of urinary epinephrine, norepinephrine, and cortisol in healthy women. Clin Chim Acta. 2001;309:25–35. doi: 10.1016/S0009-8981(01)00493-4. PubMed DOI
Ji Y, Salavaggione OE, Wang L, Adjei AA, Eckloff B, Wieben ED, Weinshilboum RM. Human phenylethanolamine N-methyltransferase pharmacogenomics: gene re-sequencing and functional genomics. J Neurochem. 2005;95:1766–1776. doi: 10.1111/j.1471-4159.2005.03453.x. PubMed DOI
Wong DL, Anderson LJ, Tai TC. Cholinergic and peptidergic regulation of phenylethanolamine N-methyltransferase gene expression. Ann N Y Acad Sci. 2002;971:19–26. PubMed
Martin JL, Begun J, McLeish MJ, Caine JM, Grunewald GL. Getting the adrenaline going: crystal structure of the adrenaline-synthesizing enzyme PNMT. Structure. 2001;9:977–985. doi: 10.1016/S0969-2126(01)00662-1. PubMed DOI
Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray J, Comings DE. Phenylethanolamine N-methyltransferase (PNMT) gene and early-onset Alzheimer disease. Am J Med Genet. 2001;105:312–316. doi: 10.1002/ajmg.1363. PubMed DOI
Mann MB, Wu S, Rostamkhani M, Tourtellotte W, MacMurray JP, Comings DE. Association between the phenylethanolamine N-methyltransferase gene and multiple sclerosis. J Neuroimmunol. 2002;124:101–105. doi: 10.1016/S0165-5728(02)00009-7. PubMed DOI
Britten RJ. DNA sequence insertion and evolutionary variation in gene regulation. Proc Natl Acad Sci USA. 1996;93:9374–9377. doi: 10.1073/pnas.93.18.9374. PubMed DOI PMC
Cahill AL, Eertmoed AL, Mangoura D, Perlman RL. Differential regulation of phenylethanolamine N-methyltransferase expression in two distinct subpopulations of bovine chromaffin cells. J Neurochem. 1996;67:1217–1224. PubMed
Fischer KJ, Stewart JK. Phenylethanolamine N-methyltransferase in the brains of streptozotocin diabetic rats. Endocrinology. 1986;119:2586–2589. PubMed
Kvetnansky R, Micutkova L, Kubovcakova L, Sabban EL, Palkovits M, Krizanova O. Localization and regulation of phenylethanolamine N-methyltransferase gene expression in the heart of rats and mice during stress. Ann N Y Acad Sci. 2004;1018:405–417. doi: 10.1196/annals.1296.050. PubMed DOI
Inouye KE, Yue JT, Chan O, Kim T, Akirav EM, Park E, Riddell MC, Burdett E, Matthews SG, Vranic M. Effects of Insulin Treatment without and with Recurrent Hypoglycemia on Hypoglycemic Counterregulation and Adrenal Catecholamine-Synthesizing Enzymes in Diabetic Rats. Endocrinology. 2006;147:1860–1870. doi: 10.1210/en.2005-1040. PubMed DOI
Pethe V, Shekhar PV. Estrogen inducibility of c-Ha-ras transcription in breast cancer cells. Identification of functional estrogen-responsive transcriptional regulatory elements in exon 1/intron 1 of the c-Ha-ras gene. J Biol Chem. 1999;274:30969–30978. doi: 10.1074/jbc.274.43.30969. PubMed DOI
Zhu Y, Bian Z, Lu P, Karas RH, Bao L, Cox D, Hodgin J, Shaul PW, Thoren P, Smithies O, Gustafsson JA, Mendelsohn ME. Abnormal vascular function and hypertension in mice deficient in estrogen receptor beta. Science. 2002;295:505–508. doi: 10.1126/science.1065250. PubMed DOI
Peng N, Clark JT, Wei CC, Wyss JM. Estrogen depletion increases blood pressure and hypothalamic norepinephrine in middle-aged spontaneously hypertensive rats. Hypertension. 2003;41:1164–1167. doi: 10.1161/01.HYP.0000065387.09043.2E. PubMed DOI
Guzzetti S, Dassi S, Pecis M, Casati R, Masu AM, Longoni P, Tinelli M, Cerutti S, Pagani M, Malliani A. Altered pattern of circadian neural control of heart period in mild hypertension. J Hypertens. 1991;9:831–838. doi: 10.1097/00004872-199109000-00010. PubMed DOI
Buijs RM, van Eden CG, Goncharuk VD, Kalsbeek A. The biological clock tunes the organs of the body: timing by hormones and the autonomic nervous system. J Endocrinol. 2003;177:17–26. doi: 10.1677/joe.0.1770017. PubMed DOI
Evinger MJ, Mathew E, Cikos S, Powers JF, Lee YS, Sheikh S, Ross RA, Tischler AS. Nicotine stimulates expression of the PNMT gene through a novel promoter sequence. J Mol Neurosci. 2005;26:39–55. doi: 10.1385/JMN:26:1:039. PubMed DOI
Her S, Claycomb R, Tai TC, Wong DL. Regulation of the rat phenylethanolamine N-methyltransferase gene by transcription factors Sp1 and MAZ. Mol Pharmacol. 2003;64:1180–1188. doi: 10.1124/mol.64.5.1180. PubMed DOI
Tai TC, Wong DL. Phenylethanolamine N-methyltransferase gene regulation by cAMP-dependent protein kinase A and protein kinase C signaling pathways. Ann N Y Acad Sci. 2002;971:83–85. PubMed
Tai TC, Wong DL. Protein kinase A and protein kinase C signaling pathway interaction in phenylethanolamine N-methyltransferase gene regulation. J Neurochem. 2003;85:816–829. PubMed