The fission yeast mitotic activator cdc25 and sucrose induce early flowering synergistically in the day-neutral Nicotiana tabacum cv. Samsun
Jazyk angličtina Země Velká Británie, Anglie Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
- MeSH
- časové faktory MeSH
- fungální proteiny genetika metabolismus MeSH
- geneticky modifikované rostliny MeSH
- kořeny rostlin růst a vývoj MeSH
- květy účinky léků metabolismus MeSH
- metabolismus sacharidů MeSH
- proteiny buněčného cyklu genetika metabolismus MeSH
- ras-GRF1 genetika metabolismus MeSH
- regulace genové exprese u rostlin MeSH
- sacharosa farmakologie MeSH
- Schizosaccharomyces * genetika MeSH
- tabák účinky léků genetika růst a vývoj metabolismus MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
- Názvy látek
- fungální proteiny MeSH
- proteiny buněčného cyklu MeSH
- ras-GRF1 MeSH
- sacharosa MeSH
Here, the tobacco (Nicotiana tabacum) day-neutral (DN) cv. Samsun transformed with the Schizosaccharomyces pombe mitotic activator gene Spcdc25 was used to study the onset of flowering. Wild type (WT) and cdc25 plants were grown from seeds in vitro until they were 20 cm high. Apical and basal nodes were then subcultured repeatedly and the regenerated plants were used to document time to flowering and the number of leaves formed before flowering. Three sucrose treatments (3, 5 or 7% (weight/volume)) were used and measurements of leaf endogenous soluble carbohydrates were performed. In the 3% treatment, cdc25 plants flowered but WT plants did not. The higher sucrose treatments enabled WT flowering; two-thirds of the plants flowered at 5%, while all plants flowered at 7% sucrose. However, in all treatments, cdc25 plants exhibited significantly earlier flowering and fewer leaves compared with wild type. Remarkably, a typical acropetal flowering gradient in WT plants did not occur in cdc25 plants. In cdc25 leaves, there were significantly higher amounts of endogenous sugars with a higher proportion of sucrose compared with WT. Our data demonstrate that Spcdc25 expression and sucrose act synergistically to induce precocious flowering.
Zobrazit více v PubMed
Aksenova NP, Milyaeva EL, Romanov GA. 2006. Florigen goes molecular: Seventy years of the hormonal theory of flowering regulation. Russian Journal of Plant Physiology 53: 401-406.
Bell MH, Halford NG, Ormrod JC, Francis D. 1993. Tobacco plants transformed with Cdc25, a mitotic inducer gene from fission yeast. Plant Molecular Biology 23: 445-451.
Bernier G. 1988. The control of floral evocation and morphogenesis. Annual Review of Plant Physiology and Plant Molecular Biology 39: 175-219.
Bernier G, Havelange A, Houssa C, Petitjean A, Lejeune P. 1993. Physiological signals that induce flowering. Plant Cell 5: 1147-1155.
Bernier G, Kinet J-M, Bronchart R. 1967. Cellular effects at the meristem during floral evocation in Sinapis alba L. Physiologie Vegetale 5: 311-324.
Bernier G, Kinet JM, Sachs RM. 1981. The physiology of flowering, Vols 1 and 2. Boca Raton, FL, USA: CRC Press.
Bernier G, Perilleux C. 2005. A physiological overview of the genetics of flowering time control. Plant Biotechnology Journal 3: 3-16.
Blazquez MA, Ferrandiz C, Madueno F, Parcy F. 2006. How floral meristems are built. Plant Molecular Biology 60: 855-870.
Bodson M, Outlaw WH. 1985. Elevation in the sucrose content of the shoot apical meristem of Sinapis alba at floral evocation. Plant Physiology 79: 420-424.
Boss PK, Bastow RM, Mylne JS, Dean C. 2004. Multiple pathways in the decision to flower. Enabling, promoting, and resetting. Plant Cell 16 (Suppl. 1): S18-S31.
Chailakhyan MK, Khazakhyan CK. 1974a. Effect of roots on growth and flowering of plants of photoperiodically neutral species. Doklady Akademii Nauk SSSR 217: 975-978.
Chailakhyan MK, Khazakhyan CK. 1974b. Interaction between leaves and shoots during flowering of plants of photoperiodically neutral species. Doklady Akademii Nauk SSSR 217: 1214-1217.
Corbesier L, Bernier G, Perilleux C. 2002. C:N ratio increases in the phloem sap during floral transition of the long-day plants Sinapis alba and Arabidopsis thaliana. Plant and Cell Physiology 43: 684-688.
Corbesier L, Kustermans G, Perilleux C, Melzer S, Moritz T, Havelange A, Bernier G. 2004. Gibberellins and the floral transition in Sinapis alba. Physiologia Plantarum 122: 152-158.
Corbesier L, Lejeune P, Bernier G. 1998. The role of carbohydrates in the induction of flowering in Arabidopsis thaliana: comparison between the wild type and a starchless mutant. Planta 206: 131-137.
Dennin KA, McDaniel CN. 1985. Floral determination in axillary buds of Nicotiana silvestris. Developmental Biology 112: 377-382.
Dielen V, Lecouvet V, Dupont S, Kinet JM. 2001. In vitro control of floral transition in tomato (Lycopersicon esculentum Mill.), the model for autonomously flowering plants, using the late flowering uniflora mutant. Journal of Experimental Botany 52: 715-723.
Dielen V, Quinet M, Chao J, Batoko H, Havelange A, Kinet JM. 2004. UNIFLORA, a pivotal gene that regulates floral transition and meristem identity in tomato (Lycopersicon esculentum) New Phytologist 161: 393-400.
Doonan JH. 1998. Cell division during floralmorphogenesis in Antirrhinum majus. In: Francis D, Dudits D, Inze D, eds. Plant cell division. London, UK: Portland Press, 207-221.
Durdan SF, Herbert RJ, Rogers HJ, Francis D. 2000. The determination time of the carpel whorl is differentially sensitive to carbohydrate supply in Pharbitis nil. Plant Physiology 123: 189-200.
Evans LT. 1971. The nature of floral induction. In: Evans LT, ed. The induction of flowering. Melbourne, Australia: Macmillan, 457-480.
Francis D, Halford NG. 2006. Nutrient sensing in meristems. Plant Molecular Biology 60: 981-993.
Francis D, Lyndon RF. 1978. Early effects of floral induction in the shoot apex of Silene. Planta 139: 273-279.
Gebhardt JS, McDaniel CN. 1991. Flowering response of day-neutral and short-day cultivars of Nicotiana tabacum L. Interactions among roots, genotype, leaf ontogenic position and growth-conditions. Planta 185: 513-517.
Houssa P, Bernier G, Kinet JM. 1991. Qualitative and quantitative-analysis of carbohydrates in leaf exudate of the short-day plant, Xanthium strumarium L. during floral transition. Journal of Plant Physiology 138: 24-28.
Huang T, Bohlenius H, Eriksson S, Parcy F, Nilsson O. 2005. The mRNA of the Arabidopsis gene FT moves from leaf to shoot apex and induces flowering. Science 309: 1694-1696.
Hughes AP. 1965. Plant growth and aerial environment. 9. A synopsis of autecology of Impatiens parviflora. New Phytologist 64: 399-413.
Jack T. 2004. Molecular and genetic mechanisms of floral control. Plant Cell 16: S1-S17.
Jacqmard A, Gadisseur I, Bernier G. 2003. Cell division and morphological changes in the shoot apex of Arabidopsis thaliana during floral transition. Annals of Botany 91: 571-576.
Kelly AJ, Bonnlander MB, Meeks-Wagner DR. 1995. NFL, the tobacco homolog of FLORICAULA and LEAFY, is transcriptionally expressed in both vegetative and floral meristems. Plant Cell 7: 225-234.
Konstantinova TN, Bavrina TV, Aksenova NP. 1976. Particularities of the regulation of flowering in photoperiod-responsive and day-neutral tobacco species under in vivo and in vitro. Soviet Plant Physiology 23: 365-371.
Konstantinova TN, Bavrina TV, Aksenova NP, Golyanovskaya SA. 1972. The effect of glucose on morphogenesis in stem calli of day-neutral tobacco, cv. Trapezoid. Soviet Plant Physiology 19: 89-97.
Lang A. 1965. Physiology of flower initiation. In: Ruhland W, ed. Encyclopedia of plant physiology, Vol. XV, Part 1. Berlin, Germany: Springer-Verlag, 1380-1536.
Lang A. 1989. Nicotiana. In: Halevy AH, ed. Handbook of flowering, Vol. 6. Boca Raton, FL, USA: CRC Press, 427-483.
Lejeune P, Bernier G, Kinet JM. 1991. Sucrose levels in leaf exudate as a function of floral induction in the long day plant Sinapis alba. Plant Physiology and Biochemistry 29: 153-157.
Lejeune P, Bernier G, Requier MC, Kinet JM. 1993. Sucrose increase during floral induction in the phloem sap collected at the apical part of the shoot of the long-day plant Sinapis-alba L. Planta 190: 71-74.
Lejeune P, Bernier G, Requier MC, Kinet JM. 1994. Cytokinins in phloem and xylem saps of Sinapis-alba during floral induction. Physiologia Plantarum 90: 522-528.
Lipavská H, Svobodová H, Albrechtová J, Kumstýřová L, Vágner M, Vondraková Z. 2000. Carbohydrate status during somatic embryo maturation in Norway spruce. In Vitro Cellular and Developmental Biology - Plant 36: 260-267.
Machácková I, Krekule J, Eder J, Seidlová F, Strnad M. 1993. Cytokinins in photoperiodic induction of flowering in Chenopodium species. Physiologia Plantarum 87: 160-166.
Mašek T, Vopalenský V, Suchomelová P, Pospíšek M. 2005. Denaturing RNA electrophoresis in TAE agarose gels. Analytical Biochemistry 336: 46-50.
McDaniel CN. 1992. Determination to flower in Nicotiana. In: Pederson RA, ed. Current topics in developmental biology. New York, NY, USA: Academic Press, 1-37.
McDaniel CN, Hartnett LK. 1993. Floral-stimulus activity in tobacco stem pieces. Planta 189: 577-583.
McDaniel CN, Hartnett LK, Sangrey KA. 1996. Regulation of node number in day-neutral Nicotiana tabacum: a factor in plant size. Plant Journal 9: 55-61.
McKibbin RS, Halford NG, Francis D. 1998. Expression of fission yeast cdc25 alters the frequency of lateral root formation in transgenic tobacco. Plant Molecular Biology 36: 601-612.
Miller MB, Lyndon RF. 1976. Rates of growth and cell-division in shoot apex of Silene during transition to flowering. Journal of Experimental Botany 27: 1142-1153.
Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio assays with tobacco tissue cultures. Physiologia Plantarum 15: 473-479.
Noh YS, Bizzell CM, Noh B, Schomburg FM, Amasino RM. 2004. EARLY FLOWERING 5 acts as a floral repressor in Arabidopsis. Plant Journal 38: 664-672.
Nougarède A, Francis D, Rondet P. 1991. Location of cell cycle changes in relation to morphological changes in the shoot apex of Silene coeli-rosa immediately before sepal initiation. Protoplasma V165: 1-10.
Nougarède A, Rembur J, Saint-Côme R. 1987. Rates of cell division in the young prefloral shoot apex of Chrysanthemum segetum L. Protoplasma V138: 156-160.
Nurse P. 1990. Universal control mechanism regulating onset of M-phase. Nature 344: 503-508.
Orchard CB, Siciliano I, Sorrell DA, Marchbank A, Rogers HJ, Francis D, Herbert RJ, Suchomelová P, Lipavská H, Azmi A et al . 2005. Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant Journal 44: 290-299.
Ormrod JC, Francis D. 1986. Mean rate of DNA-replication and replicon size in the shoot apex of Silene coeli-rosa L. during the initial 120 minutes of the 1st day of floral induction. Protoplasma 130: 206-210.
Parfitt D, Herbert RJ, Rogers HJ, Francis D. 2004. Differential expression of putative floral genes in Pharbitis nil shoot apices cultured on glucose compared with sucrose. Journal of Experimental Botany 55: 2169-2177.
Putterill J, Laurie R, Macknight R. 2004. It's time to flower: the genetic control of flowering time. Bioessays 26: 363-373.
Robinson LW, Wareing PF. 1969. Experiments on juvenile-adult phase change in some woody species. New Phytologist 68: 67-78.
Roldán M, Gomez-Mena C, Ruiz-Garcia L, Salinas J, Martinez-Zapater JM. 1999. Sucrose availability on the aerial part of the plant promotes morphogenesis and flowering of Arabidopsis in the dark. Plant Journal 20: 581-590.
Russell P, Nurse P. 1986. Cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell 45: 145-153.
Sorrell DA, Menges M, Healy JMS, Deveaux Y, Amano C, Kagami H, Shinmo A, Doonan JH, Sekine M, Murray JAH. 2001. Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar Bright Yellow-2 cells. Plant Physiology 126: 1214-1223.
Suchomelová P, Uchytilová L, Lipavská H. 2004a. Tobacco cells transformed with fission yeast cdc25 gene display characteristics evocable by cytokinin application. Acta Physiologiae Plantarum 26: 161.
Suchomelová P, Velgová D, Mašek T, Francis D, Rogers HJ, Marchbank AM, Lipavská H. 2004b. Expression of the fission yeast cell cycle regulator cdc25 induces de novo shoot formation in tobacco: evidence of a cytokinin-like effect by this mitotic activator. Plant Physiology and Biochemistry 42: 49-55.
Tran Thanh Van M. 1973. Direct flower neoformation from superficial tissue of small explants of Nicotiana tabacum L. Planta 115: 87-92.
Tran Thanh Van M, Nguyen Thi D, Averil C. 1974. Regulation of organogenesis in small explants of superficial tissue of Nicotiana tabacum L. Planta V119: 149-159.
Vincent CA, Carpenter R, Coen ES. 1995. Cell lineage patterns and homeotic gene activity during Antirrhinum flower development. Current Biology 5: 1449-1458.
Zeevaart JAD. 1962. The juvenile phase in Bryophyllum daigremontianum. Planta 58: 543-548.
Zhang KR, Diederich L, John PCL. 2005. The cytokinin requirement for cell division in cultured Nicotiana plumbaginifolia cells can be satisfied by yeast cdc25 protein tyrosine phosphatase. Implications for mechanisms of cytokinin response and plant development. Plant Physiology 137: 308-316.
Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes