Expression of Arabidopsis WEE1 in tobacco induces unexpected morphological and developmental changes

. 2019 Jun 18 ; 9 (1) : 8695. [epub] 20190618

Jazyk angličtina Země Anglie, Velká Británie Médium electronic

Typ dokumentu časopisecké články, práce podpořená grantem

Perzistentní odkaz   https://www.medvik.cz/link/pmid31213651
Odkazy

PubMed 31213651
PubMed Central PMC6581958
DOI 10.1038/s41598-019-45015-3
PII: 10.1038/s41598-019-45015-3
Knihovny.cz E-zdroje

WEE1 regulates the cell cycle by inactivating cyclin dependent protein kinases (CDKs) via phosphorylation. In yeast and animal cells, CDC25 phosphatase dephosphorylates the CDK releasing cells into mitosis, but in plants, its role is less clear. Expression of fission yeast CDC25 (Spcdc25) in tobacco results in small cell size, premature flowering and increased shoot morphogenetic capacity in culture. When Arath;WEE1 is over-expressed in Arabidopsis, root apical meristem cell size increases, and morphogenetic capacity of cultured hypocotyls is reduced. However expression of Arath;WEE1 in tobacco plants resulted in precocious flowering and increased shoot morphogenesis of stem explants, and in BY2 cultures cell size was reduced. This phenotype is similar to expression of Spcdc25 and is consistent with a dominant negative effect on WEE1 action. Consistent with this putative mechanism, WEE1 protein levels fell and CDKB levels rose prematurely, coinciding with early mitosis. The phenotype is not due to sense-mediated silencing of WEE1, as overall levels of WEE1 transcript were not reduced in BY2 lines expressing Arath;WEE1. However the pattern of native WEE1 transcript accumulation through the cell cycle was altered by Arath;WEE1 expression, suggesting feedback inhibition of native WEE1 transcription.

Zobrazit více v PubMed

Scofield S, Jones A, Murray JAH. The plant cell cycle in context. J. Exp. Bot. 2014;65:2557–2562. doi: 10.1093/jxb/eru188. PubMed DOI

Ferreira PC, Hemerly AS, Villarroel R, Van Montagu M, Inzé D. The Arabidopsis functional homolog of the p34cdc2 protein kinase. Plant Cell. 1991;3:531–540. PubMed PMC

Joubes J, et al. CDK-related protein kinases in the plant cell cycle. Plant Mol. Biol. 2000;43:607–620. doi: 10.1023/A:1006470301554. PubMed DOI

Sorrell DA, et al. Cell cycle regulation of cyclin-dependent kinases in tobacco cultivar bright yellow-2 cells. Plant Physiol. 2001;126:1214–1223. doi: 10.1104/pp.126.3.1214. PubMed DOI PMC

Porceddu A, et al. A plant-specific cyclin-dependent kinase is involved in the control of the G2M transition in plants. Journal of Biol. Chem. 2001;276:36364–36360. doi: 10.1074/jbc.M011060200. PubMed DOI

Imajuku Y, Hirayama T, Endoh H, Oka A. Exon-intron organization of the Arabidopsis thaliana protein kinase genes CDC2a and CDC2b. FEBS Lett. 1992;304:73–77. doi: 10.1016/0014-5793(92)80592-5. PubMed DOI

Russell P, Nurse P. Negative regulation of mitosis by wee1+, a gene encoding a protein kinase homologue. Cell. 1987;49:559–567. doi: 10.1016/0092-8674(87)90458-2. PubMed DOI

Mueller PR, Coleman TR, Kumagai A, Dunphy WG. Myt1: a membrane-associated inhibitory kinase that phosphorylates Cdc2 on both threonine-14 and tyrosine-15. Science. 1995;270:86–90. doi: 10.1126/science.270.5233.86. PubMed DOI

Russell P, Nurse P. Cdc25+ functions as an inducer in the mitotic control of fission yeast. Cell. 1986;45:145–153. doi: 10.1016/0092-8674(86)90546-5. PubMed DOI

Dissmeyer N, et al. Control of of cell proliferation, organ growth, and DNA damage response operate independently of dephosphorylation of the Arabidopsis Cdk1 Homolog CDKA;1. Plant Cell. 2009;21:3641–3654. doi: 10.1105/tpc.109.070417. PubMed DOI PMC

Sorrell DA, Chrimes D, Dickinson JR, Rogers HJ, Francis D. The Arabidopsis CDC25 induces a short cell length when over expressed in fission yeast: evidence for cell cycle function. New Phytol. 2005;165:425–428. doi: 10.1111/j.1469-8137.2004.01288.x. PubMed DOI

Spadafora ND, et al. Arabidopsis T-DNA insertional lines for CDC25 are hypersensitive to hydroxyurea but not to zeocin or salt stress. Ann. Bot.-London. 2011;107:1183–1192. doi: 10.1093/aob/mcq142. PubMed DOI PMC

Bleeker PM, Hakvoort HW, Bliek M, Souer E, Schat H. Enhanced arsenate reduction by a CDC25-like tyrosine phosphatase explains increased phytochelatin accumulation in arsenate-tolerant Holcus lanatus. Plant J. 2006;45:917–929. doi: 10.1111/j.1365-313X.2005.02651.x. PubMed DOI

Bell MH, Halford NG, Ormrod JC, Francis D. Tobacco plants transformed with cdc25, a mitotic inducer gene from fission yeast. Plant Mol. Biol. 1993;23:445–451. doi: 10.1007/BF00019293. PubMed DOI

Lipavská, H., Mašková, P. & Vojvodova, P. Regulatory dephosphorylation of CDK at G2/M in plants: yeast mitotic phosphatase cdc25 induces cytokinin-like effects in transgenic tobacco morphogenesis. Ann. Bot.-London107, 1071–1086 (2011). PubMed PMC

Spadafora ND, et al. Perturbation of cytokinin and ethylene-signalling pathways explain the strong rooting phenotype exhibited by Arabidopsis expressing the Schizosaccharomyces pombe mitotic inducer, cdc25. BMC Plant Biol. 2012;12:45. doi: 10.1186/1471-2229-12-45. PubMed DOI PMC

Orchard CB, et al. Tobacco BY-2 cells expressing fission yeast cdc25 bypass a G2/M block on the cell cycle. Plant J. 2005;44:290–299. doi: 10.1111/j.1365-313X.2005.02524.x. PubMed DOI

Mašková P, Novák O, Lipavská H. Tobacco cells transformed with the fission yeast Spcdc25 mitotic inducer display growth and morphological characteristics as well as starch and sugar status evocable by cytokinin application. Plant Physiol. and Bioch. 2008;46:673–684. doi: 10.1016/j.plaphy.2008.04.017. PubMed DOI

Suchomelová P, et al. Expression of the fission yeast cell cycle regulator cdc25 induces de novo shoot formation in tobacco: evidence of a cytokinin-like effect by this mitotic activator. Plant Physiol. and Bioch. 2004;42:49–55. doi: 10.1016/j.plaphy.2003.10.010. PubMed DOI

Vojvodová P, Mašková P, Francis D, Lipavská H. A yeast mitotic activator sensitises the shoot apical meristem to become floral in day-neutral tobacco. Planta. 2013;238:793–806. doi: 10.1007/s00425-013-1931-z. PubMed DOI

Teichmanová M, et al. The fission yeast mitotic activator cdc25 and sucrose induce early flowering synergistically in the day-neutral Nicotiana tabacum cv. Samsun. New Phytol. 2007;176:804–812. doi: 10.1111/j.1469-8137.2007.02243.x. PubMed DOI

De Schutter K, et al. Arabidopsis WEE1 kinase controls cell cycle arrest in response to activation of the DNA integrity checkpoint. Plant Cell. 2007;19:211–225. doi: 10.1105/tpc.106.045047. PubMed DOI PMC

Cook GS, et al. Plant WEE1 kinase is cell cycle regulated and removed at mitosis via the 26S proteasome machinery. J. Exp. Bot. 2013;64:2093–2105. doi: 10.1093/jxb/ert066. PubMed DOI PMC

Spadafora N, et al. Gene dosage effect of WEE1 on growth and morphogenesis from Arabidopsis hypocotyl explants. Ann. Bot.-London. 2012;110:1631–1639. doi: 10.1093/aob/mcs223. PubMed DOI PMC

Gonzalez N, Gévaudant F, Hernould M, Chevalier C, Moura A. The cell cycle-associated protein kinase WEE1 regulates cell size in relation to endoreduplication in developing tomato fruit. Plant J. 2007;51:642–655. doi: 10.1111/j.1365-313X.2007.03167.x. PubMed DOI

McKibbin R, Halford NG, Francis D. Expression of fission yeast cdc25 alters the frequency of lateral root formation in transgenic tobacco. Plant Mol. Biol. 1998;36:601–612. doi: 10.1023/A:1005937011095. PubMed DOI

Parent JS, et al. Post-transcriptional gene silencing triggered by sense transgenes involves uncapped antisense RNA and differs from silencing intentionally triggered by antisense transgenes. Nucleic Acids Res. 2015;43:8464–8475. doi: 10.1093/nar/gkv753. PubMed DOI PMC

Nagata T, Okada K, Kawazu T, Takebe I. Cauliflower mosaic virus 35S promoter directs S phase specific expression in plant cells. Mol. Gen. Genet. 1987;207:242–244. doi: 10.1007/BF00331584. DOI

Genschik P, Criqui MC, Parmentier Y, Derevier A, Fleck J. Cell cycle–dependent proteolysis in plants: identification of the destruction box pathway and metaphase arrest produced by the proteasome inhibitor MG132. Plant Cell. 1998;10:2063–207. PubMed PMC

Li ZY, Li B, Dong AW. The Arabidopsis transcription factor AtTCP15 regulates endoreduplication by modulating expression of key cell-cycle genes. Mol. Plant. 2012;5:270–280. doi: 10.1093/mp/ssr086. PubMed DOI

Ogita N, et al. Identifying the target genes of SUPPRESSOR OF GAMMA RESPONSE 1, a master transcription factor controlling DNA damage response in Arabidopsis. Plant J. 2018;94:439–453. doi: 10.1111/tpj.13866. PubMed DOI

Gatz C, Frohberg C, Wendenberg R. Stringent repression and homogenous derepression by tetracycline of a modified CaMV 35S promoter in intact transgenic tobacco plants. Plant J. 1992;2:397–404. PubMed

Siciliano I. Effect of plant WEE1 on the cell cycle and development in Arabidopsis thaliana and Nicotiana tabacum. PhD Thesis, Cardiff University (2006).

Aoyama T, Chua NH. A glucocorticoid-mediated transcriptional induction system in transgenic plants. Plant J. 1997;11:605–612. doi: 10.1046/j.1365-313X.1997.11030605.x. PubMed DOI

Walter M, et al. Visualization of protein interactions in living plant cells using bimolecular fluorescence complementation. Plant J. 2004;40:428–438. doi: 10.1111/j.1365-313X.2004.02219.x. PubMed DOI

Lentz Grølund A, et al. Plant WEE1 kinase interacts with a 14-3-3 protein, GF14ω but a mutation of WEE1 at S485 alters their spatial interaction, Open Plant Sci. J. 2009;3:40–48.

An GH. High-efficiency transformation of cultured tobacco cells. Plant Physiol. 1985;79:568–570. doi: 10.1104/pp.79.2.568. PubMed DOI PMC

Ševčíková, H. Regulation of morphogenic processes in potato - the role of sugar metabolism. PhD Thesis, Charles University, Prague (2018).

Francis D, Davies MS, Braybrook A, James NC, Herbert RJ. An effect of zinc on M-phase and G1 of the plant cell cycle in the synchronous TBY-2 tobacco cell suspension. J. Exp. Bot. 1995;46:1887–1894. doi: 10.1093/jxb/46.12.1887. DOI

Parfitt D, Herbert RJ, Rogers HJ, Francis D. Differential expression of putative floral genes in Pharbitis nil shoot apices on glucose compared with sucrose. J. Exp. Bot. 2004;55:2169–2177. doi: 10.1093/jxb/erh234. PubMed DOI

Price A, et al. A comparison of leaf and petal senescence in wallflower reveals common and distinct patterns of gene expression and physiology. Plant Physiol. 2008;147:1898–1912. doi: 10.1104/pp.108.120402. PubMed DOI PMC

Cockcroft CE, den Boer BG, Healy JMS, Murray JAH. Cyclin D control of growth rate in plants. Nature. 2000;405:575–579. doi: 10.1038/35014621. PubMed DOI

Najít záznam

Citační ukazatele

Nahrávání dat ...

Možnosti archivace

Nahrávání dat ...