Directional functional coupling of cerebral rhythms between anterior cingulate and dorsolateral prefrontal areas during rare stimuli: a directed transfer function analysis of human depth EEG signal
Jazyk angličtina Země Spojené státy americké Médium print
Typ dokumentu časopisecké články, práce podpořená grantem
PubMed
17999400
PubMed Central
PMC6870726
DOI
10.1002/hbm.20491
Knihovny.cz E-zdroje
- MeSH
- akční potenciály fyziologie MeSH
- biologické hodiny fyziologie MeSH
- cingulární gyrus anatomie a histologie fyziologie MeSH
- dospělí MeSH
- duševní procesy fyziologie MeSH
- elektroencefalografie metody MeSH
- evokované potenciály fyziologie MeSH
- interpretace statistických dat MeSH
- kognice fyziologie MeSH
- lidé MeSH
- mapování mozku MeSH
- mladý dospělý MeSH
- nervové dráhy anatomie a histologie fyziologie MeSH
- neurony fyziologie MeSH
- neuropsychologické testy MeSH
- počítačové zpracování signálu MeSH
- prefrontální mozková kůra anatomie a histologie fyziologie MeSH
- světelná stimulace MeSH
- Check Tag
- dospělí MeSH
- lidé MeSH
- mladý dospělý MeSH
- mužské pohlaví MeSH
- ženské pohlaví MeSH
- Publikační typ
- časopisecké články MeSH
- práce podpořená grantem MeSH
What is the neural substrate of our capability to properly react to changes in the environment? It can be hypothesized that the anterior cingulate cortex (ACC) manages repetitive stimuli in routine conditions and alerts the dorsolateral prefrontal cortex (PFC) when stimulation unexpectedly changes. To provide evidence in favor of this hypothesis, intracerebral stereoelectroencephalographic (SEEG) data were recorded from the anterior cingulate and dorsolateral PFC of eight epileptic patients in a standard visual oddball task during presurgical monitoring. Two types of stimuli (200 ms duration) such as the letters O (frequent stimuli; 80% of probability) and X (rare stimuli) were presented in random order, with an interstimulus interval between 2 and 5 s. Subjects had to mentally count the rare (target) stimuli and to press a button with their dominant hand as quickly and accurately as possible. EEG frequency bands of interest were theta (4-8 Hz), alpha (8-12 Hz), beta (14-30 Hz), and gamma (30-45 Hz). The directionality of the information flux within the EEG rhythms was indexed by a directed transfer function (DTF). The results showed that compared with the frequent stimuli, the target stimuli induced a statistically significant increase of DTF values from the anterior cingulate to the dorsolateral PFC at the theta rhythms (P < 0.01). These results provide support to the hypothesis that ACC directly or indirectly affects the oscillatory activity of dorsolateral PFC by a selective frequency code under typical oddball conditions.
Zobrazit více v PubMed
Babiloni C,Babiloni F,Carducci F,Cincotti F,Vecchio F,Cola B,Rossi S,Miniussi C,Rossini PM( 2004): Functional frontoparietal connectivity during short‐term memory as revealed by high‐resolution EEG coherence analysis. Behav Neurosci 118: 687–697. PubMed
Babiloni C,Vecchio F,Cappa S,Pasqualetti P,Rossi S,Miniussi C,Rossini PM( 2006): Functional frontoparietal connectivity during encoding and retrieval processes follows HERA model. A high‐resolution study. Brain Res Bull 68: 203–212. PubMed
Banich MT,Milham MP,Atchley RA,Cohen NJ,Webb A,Wszalek T,Kramer AF,Liang Z,Barad V,Gullet D,Shah C,Brown C( 2000): Prefrontal regions play a predominant role in imposing an attentional “set”: Evidence from fMRI. Cogn Brain Res 10: 1–9. PubMed
Barbas H,Pandya DN( 1989): Architecture and intrinsic connections of the prefrontal cortex in the rhesus monkey. J Comp Neurol 286: 353–375. PubMed
Barch DM,Braver TS,Akbudak E,Conturo T,Ollinger J,Snyder A( 2001): Anterior cingulate cortex and response conflict: Effects of response modality and processing domain. Cereb Cortex 11: 837–848. PubMed
Basar E,Basar‐Eroglu C,Karakas S,Schurmann M( 1999): Are cognitive processes manifested in event‐related gamma, α, θ and δ oscillations in the EEG? Neurosci Lett 259: 165–168. PubMed
Baudena P,Halgren E,Heit G,Clarke JM( 1995): Intracerebral potentials to rare target and distractor auditory and visual stimuli. III. Frontal cortex. Electroencephalogr Clin Neurophysiol 94: 251–264. PubMed
Berg RW,Kleinfeld D( 2003): Vibrissa movement elicited by rhythmic electrical microstimulation to motor cortex in the aroused rat mimics exploratory whisking. J Neurophysiol 90: 2950–2963. PubMed
Blinowska KJ,Kus R,Kaminski M. 2004): Granger causality and information flow in multivariate processes. Phys Rev E Stat Nonlin Soft Matter Phys 70(5, Part 1): 050902. PubMed
Botvinick M,Nystrom LE,Fissell K,Carter CS,Cohen JD( 1999): Conflict monitoring versus selection‐for‐action in anterior cingulate cortex. Nature 402: 179–181. PubMed
Brankack J,Seidenbecher T,Muller‐Gartner HW( 1996): Task‐relevant late positive component in rats: is it related to hippocampal θ rhythm? Hippocampus 6: 475–482. PubMed
Braver TS,Barch DM,Kelley WM,Buckner RL,Cohen NJ,Miezin FM,Snyder AZ,Ollinger JM,Akbudak E,Conturo TE,Petersen SE( 2001): Direct comparison of prefrontal cortex regions engaged by working and long‐term memory tasks. Neuroimage 14: 48–59. PubMed
Brázdil M,Rektor I,Dufek M,Daniel P,Jurák P,Kuba R( 1999): The role of frontal and temporal lobes in visual discrimination task—Depth ERP studies. Neurophysiol Clin 29: 339–350. PubMed
Brázdil M,Dobšík M,Mikl M,Hluštík P,Daniel P,Pažourková M,Krupa P,Rektor I( 2005): Combined event‐related fMRI and intracerebral ERP study of an auditory oddball task. Neuroimage 26/1: 285–293. PubMed
Brázdil M,Mikl M,Mareček R,Krupa P,Rektor I.( 2007): Effective connectivity in target stimulus processing: A dynamic causal modeling study of visual oddball task. NeuroImage 35: 827–835. PubMed
Bush G,Luu P,Posner MI( 2000): Cognitive and emotional influences in anterior cingulate cortex. Trends Cogn Sci 4: 215–222. PubMed
Buzsaki G,Draguhn A( 2004): Neuronal oscillations in cortical networks. Science 304: 1926–1929. PubMed
Carter CS,Braver TS,Barch DM,Botvinick MM,Noll D,Cohen JD( 1998): Anterior cingulate cortex, error detection, and the online monitoring of performance. Science 280: 747–749. PubMed
Clark VP,Fannon S,Lai S,Benson R,Bauer L( 2000): Responses to rare visual target and distractor stimuli using event‐related fMRI. J Neurophysiol 83: 3133–3139. PubMed
Cohen JD,Botvinick M,Carter CS( 2000): Anterior cingulate and prefrontal cortex: Who's in control? Nat Neurosci 3: 421–423. PubMed
Corbetta M,Shulman GL( 2002): Control of goal‐directed and stimulus‐driven attention in the brain. Nat Rev Neurosci 3: 201–215. PubMed
De Gennaro L,Vecchio F,Ferrara M,Curcio G,Rossini PM,Babiloni C( 2004): Changes in fronto‐posterior functional coupling at sleep onset in humans. J Sleep Res 13: 209–217. PubMed
Fan J,McCandliss BD,Fossella J,Flombaum JI,Posner MI( 2005): The activation of attentional networks. Neuroimage 26: 471–479. PubMed
Gevins A,Smith ME( 2000): Neurophysiological measures of working memory and individual differences in cognitive ability and cognitive style. Cereb Cortex 10: 829–839. PubMed
Gitelman DR,Nobre AC,Parrish TB,LaBar KS,Kim YH,Meyer JR,Mesulam MM( 1999): A large‐scale distributed network for covert spatial attention: Further anatomical delineation based on stringent behavioral and cognitive controls. Brain 122: 1093–1106. PubMed
Halgren E,Marinkovic K,Chauvel P( 1998): Generators of the late cognitive potentials in auditory and visual oddball tasks. Electroencephalogr Clin Neurophysiol 106: 156–164. PubMed
Hasselmo ME,Hay J,Ilyn M,Gorchetchnikov A( 2002): Neuromodulation, θ rhythm and rat spatial navigation. Neural Netw 15: 689–707. PubMed
Kaminski MJ,Blinowska KJ( 1991): A new method of the description of the information flow in the structures. Biol Cybern 65: 203–210. PubMed
Kaminski MJ,Blinowska KJ,Szclenberger W( 1997): Topographic analysis of coherence and propagation of EEG activity during sleep and wakefulness. Electroencephalogr Clin Neurophysiol 102: 216–227. PubMed
Kiehl KA,Laurens KR,Duty TL,Forster BB,Liddle PF( 2001): Neural sources involved in auditory target detection and novelty processing: An event‐related fMRI study. Psychophysiology 38: 133–142. PubMed
Kiehl KA,Stevens MC,Laurens KR,Pearlson G,Calhoun VD,Liddle PF( 2005): An adaptive reflexive processing model of neurocognitive function: Supporting evidence from a large scale (n = 100) fMRI study of an auditory oddball task. Neuroimage 25: 899–915. PubMed
Kleinfeld D,Berg RW,O'Connor SM( 1999): Anatomical loops and their electrical dynamics in relation to whisking by rat. Somatosens Mot Res 16: 69–88. PubMed
Klimesch W( 1999): EEG α and θ oscillations reflect cognitive and memory performance: A review and analysis. Brain Res Brain Res Rev 29: 169–195. PubMed
Klimesch W,Doppelmayr M,Yonelinas A,Kroll NE,Lazzara M,Rohm D,Gruber W( 2001): θ Synchronization during episodic retrieval: Neural correlates of conscious awareness. Brain Res Cogn Brain Res 12: 33–38. PubMed
Klimesch W,Doppelmayr M,Hanslmayr S( 2006): Upper α ERD and absolute power: Their meaning for memory performance. Prog Brain Res 159: 151–165. PubMed
Kondo H,Osaka N,Osaka M( 2004): Cooperation of the anterior cingulate cortex and dorsolateral prefrontal cortex for attention shifting. Neuroimage 23: 670–679. PubMed
Konrad K,Neufang S,Thiel CM,Specht K,Hanisch C,Fan J,Herpertz‐Dahlmann B,Fink GR( 2005): Development of attentional networks: An fMRI study with children and adults. Neuroimage 28: 429–439. PubMed
Luks TL,Simpson GV,Feiwell RJ,Miller WL( 2002): Evidence for anterior cingulate cortec involvement in monitoring preparatory attentional set. NeuroImage 17: 792–802. PubMed
MacDonald AW,Cohen JD,Stenger VA,Carter CS( 2000): Dissociating the role of the dorsolateral prefrontal and anterior cingulate cortex in cognitive control. Science 288: 1835–1838. PubMed
Mesulam MM( 1981): A cortical network for directed attention and unilateral neglect. Ann Neurol 10: 309–325. PubMed
Mesulam MM( 1990): Large‐scale neurocognitive networks and distributed processing for attention, language, and memory. Ann Neurol 28: 597–613. PubMed
Mesulam MM( 1999): Spatial attention and neglect: parietal, frontal and cingulate contributions to the mental representation and attentional targeting of salient extrapersonal events. Philos Trans R Soc London 354: 1325–1346. PubMed PMC
Milham MP,Banich MT,Claus ED,Cohen NJ( 2003): Practice‐related effects demonstrate complementary roles of anterior cingulate and prefrontal cortices in attentional control. Neuroimage 18: 483–493. PubMed
Nebel K,Wiese H,Stude P,de Greiff A,Diener HC,Keidel M( 2005): On the neural basis of focused and divided attention. Cogn Brain Res 25: 760–776. PubMed
Pfurtscheller G,Lopes da Silva FH( 1999): Event‐related EEG/MEG synchronization and desynchronization: Basic principles. Clin Neurophysiol 110: 1842–1857. PubMed
Sauseng P,Klimesch W,Gruber WR,Doppelmayr M,Stadler M,Schabus M( 2002): The interplay between θ and α oscillations in the human electroencephalogram reflects the transfer of information between memory systems. Neurosci Lett 323: 121–124. PubMed
Sauseng P,Klimesch W,Doppelmayr M,Hanslmayr S,Schabus M,Gruber WR( 2004): θ Coupling in the human electroencephalogram during a working memory task. Neurosci Lett 354: 123–126. PubMed
Shallice T( 1988): From Neuropsychology to Mental Structure. Cambridge: Cambridge University Press.
Shallice T,Burgess PW,Schon F,Baxter DM( 1989): The origin of utilization behavior. Brain 112: 1587–1598. PubMed
Snyder E,Hillyard SA( 1976): Long‐latency evoked potentials to irrelevant, deviant stimuli. Behav Biol 16: 319–331. PubMed
Sochůrková D,Brázdil M,Jurák P,Rektor I( 2006): P3 and ERD/ERS in a visual oddball paradigm. A depth EEG study from the mesial temporal structures. J Psychophysiol 20: 32–39.
Squires NK,Squires KC,Hillyard SA( 1975): Two varieties of long‐latency positive waves evoked by unpredictable auditory stimuli in man. Electroencephalogr Clin Neurophysiol 38: 387–401. PubMed
Stevens AA,Skudlarski P,Gatenby JC,Gore JC( 2000): Event‐related fMRI of auditory and visual oddball tasks. Magn Reson Imaging 18: 495–502. PubMed
Talairach J,Szikla G,Tournoux P,Prosalentis A,Bordas‐Ferrer M,Covello J( 1967): Atlas d'anatomie stereotactique du telencephale. Paris: Masson;
Vanderwolf CH( 1969): Hippocampal electrical activity and voluntary movement in the rat. Electroencephalogr Clin Neurophysiol 26: 407–418. PubMed
Verleger R,Jaskowski P,Wascher E( 2005): Evidence for an integrative role of P3b in linking reaction to perception. J Psychophysiol 19: 165–181.
Whishaw IQ,Schallert T( 1977): Hippocampal RSA (θ), apnea, bradycardia and effects of atropine during underwater swimming in the rat. Electroencephalogr Clin Neurophysiol 42: 389–396. PubMed
Woldorf MG,Fichtenholtz HM,Song AW,Mangun GR. 2001): Cue‐ and target‐related processing in a fast‐rate cued visual spatial attention paradigm. Presented at the 2001 Meeting of the Organization for Human Brain Mapping. Brighton,UK.
Yoshiura T,Zhong J,Shibata DK,Kwok WE,Shrier DA,Numaguchi Y( 1999): Functional MRI study of auditory and visual oddball tasks. Neuroreport 10: 1683–1688. PubMed